Water quality parameters in coastal and estuarine environments (2013)

Licence

Creative Commons Attribution-NonCommercial-NoDerivs 3.0 New Zealand

You may not use this work for commercial purposes.

You must attribute the creator in your own works.

You must not release derivatives of this work.

1751
75
Added
28 Sep 2015

This dataset was first added to MfE Data Service on 28 Sep 2015.

Coastal and estuarine ecosystems are affected by changes in the levels of nutrients, oxygen, and light. An overload of nutrients can be toxic or lead to algal blooms. These blooms can kill marine life by depleting oxygen levels. Suspended sediment can smother habitats or reduce light levels, affecting photosynthesis. We report on five measures of water quality: turbidity (murkiness), dissolved oxygen, and the dissolved nutrients nitrate- and nitrite-nitrogen, ammoniacal nitrogen, and total phosphorus.
This dataset relates to the "Coastal and estuarine water quality" measure on the Environmental Indicators, Te taiao Aotearoa website.

Table ID 52508
Data type Table
Row count 1623
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Nitrate leaching from livestock time series 1990–2017

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

1317
22
Added
16 Apr 2019

This dataset was first added to MfE Data Service on 16 Apr 2019.

We report on trends in nitrate-nitrogen from livestock that has leached from soil per year across New Zealand since 1990.

Nitrogen is an essential nutrient for plant growth. It occurs naturally, but in agricultural systems more nitrogen is commonly added to soils as fertiliser or as urine or dung from livestock. Not all the additional nitrogen can be used by plants and microorganisms, so some nitrate-nitrogen may leach (drain) from the soil. Livestock urine is the dominant source of nitrate-nitrogen leached from soil. Leached nitrate-nitrogen can enter groundwater and waterways, potentially causing ecological harm. The amount of nitrate-nitrogen leaching from the soil varies around the country as a result of different land uses, climates, and soils.

More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Summary report available at www.mfe.govt.nz/publications/fresh-water/spatial-n...

Table ID 99876
Data type Table
Row count 2016
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Conservation status of indigenous species 2018

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

1311
21
Added
16 Apr 2019

This dataset was first added to MfE Data Service on 16 Apr 2019.

Many of New Zealand’s indigenous plants and animals are endemic – found nowhere else in the world – and are our national taonga (treasure). New Zealand species make a significant contribution to global biodiversity, which is important for ecosystem processes and resilience, mahinga kai (traditional food gathering), and culture and recreation.

Conservation status is a representation of the threat classification of resident indigenous plant and animal species. The Department of Conservation (DOC) developed the New Zealand Threat Classification System (NZTCS) to provide a national system that is similar to the International Union for Conservation of Nature and Natural Resources Red List.

We report on four conservation status categories: threatened, at risk, not threatened, and data deficient. Conservation status categories ‘threatened’ and ‘at risk’ are divided into subcategories that provide more information on the species’ threat of extinction classification (adapted from Townsend et al, 2008). Species are classified as ‘data deficient’ if we lack information on the species, making threat classification assessment not possible.

More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 99875
Data type Table
Row count 10667
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Time series for two coastal sea surface temperature monitoring stations (1953–2012)

Licence

Creative Commons Attribution 3.0 New Zealand

You may use this work for commercial purposes.

You must attribute the creator in your own works.

1288
39
Added
28 Sep 2015

This dataset was first added to MfE Data Service on 28 Sep 2015.

Coastal sea-surface temperature is influenced by solar heating and cooling, latitude, and local geography. It is hard for some marine species to survive when the sea temperature changes. This can affect marine ecosystems and processes. It can also affect fish-farming industries based in our coastal areas.
This dataset relates to the "Coastal sea-surface temperature" measure on the Environmental Indicators, Te taiao Aotearoa website.

Table ID 52525
Data type Table
Row count 60
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Fishing effort (number of dredge tows) by year (1990–2014)

Licence

Creative Commons Attribution 3.0 New Zealand

You may use this work for commercial purposes.

You must attribute the creator in your own works.

1181
37
Added
28 Sep 2015

This dataset was first added to MfE Data Service on 28 Sep 2015.

Seabed trawling is the practice of towing fishing nets near or along the ocean floor. The towing process can physically damage seabed (benthic) habitats and species. It can also stir up sediment from the seabed. This creates sediment plumes that change light conditions. This can affect marine species (for example by limiting their capacity to generate energy through photosynthesis) and smother sensitive species.
This dataset relates to the "Commercial seabed trawling and dredging" measure on the Environmental Indicators, Te taiao Aotearoa website.

Table ID 52505
Data type Table
Row count 50
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

River water quality trends 2008–2017 1998–2017 and 1990–2017

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

1169
19
Added
16 Apr 2019

This dataset was first added to MfE Data Service on 16 Apr 2019.

This dataset measures how water quality in New Zealand’s rivers is changing over time. It contains nine parameters of water quality based on measurements made at monitored river sites in years 1990-2017:

- Nitrate-nitrogen
- Ammoniacal nitrogen
- Total nitrogen
- Total phosphorus
- Dissolved reactive phosphorus
- Water clarity
- Turbidity
- Escherichia coli
- Macroinvertebrate community index

More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Summary report available at www.mfe.govt.nz/publications/fresh-water/water-qua....

Table ID 99883
Data type Table
Row count 9021
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

New Zealand’s greenhouse gas emissions by sector and gas 2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

1161
7
Added
16 Apr 2019

This dataset was first added to MfE Data Service on 16 Apr 2019.

We measure gases that are added to the atmosphere through human activities. This does not include natural sources such as biological processes or volcanic emissions.

We report greenhouse gas (GHG) emissions in carbon dioxide equivalent (CO2-e) units, which is a measure for how much global warming a given type and amount of greenhouse gas causes, using the equivalent amount of carbon dioxide as the reference. CO2-e is used for describing different greenhouse gases in a common unit, which allows them to be reported consistently.

Data may not include the latest emissions data, which can be found on the Ministry for the Environment’s website.

More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 99874
Data type Table
Row count 30
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Lake water quality state 2013–2017

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

1156
10
Added
16 Apr 2019

This dataset was first added to MfE Data Service on 16 Apr 2019.

This dataset contains ten lake water quality variables based on measurements made at monitored lake sites: chlorophyll-a, nitrate-nitrogen, total nitrogen, ammoniacal nitrogen, dissolved reactive phosphorus, total phosphorus, Escherichia coli, water clarity, and lake trophic level index (TLI3 and TLI4). This dataset includes: - Median values for the period 2013 to 2017 - For selected indicators, how these values compare to the National Objectives Framework (NOF) (MfE, 2017) bands related to ecosystem health When nitrogen and phosphorus accumulate above certain concentrations in lakes (referred to as ‘nutrient enrichment’), they can stimulate excessive growth of algae and cyanobacteria. Chlorophyll-a is a measure of the phytoplankton (algae) biomass. The lake trophic level index (TLI) indicates the health of a lake based on concentrations of three variables:
· total nitrogen
· total phosphorus
· chlorophyll-a.
Water clarity is a measure of underwater visibility. Lakes with poor clarity and TLI are poor habitats for some species of animals and plants, and they may not be suitable for recreation. Ammoniacal nitrogen can be toxic to aquatic life if concentrations are high enough.

More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Summary report available at: www.mfe.govt.nz/publications/fresh-water/water-qua....

Table ID 99872
Data type Table
Row count 454
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Groundwater quality state 2010–2014

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

1130
8
Added
14 Apr 2019

This dataset was first added to MfE Data Service on 14 Apr 2019.

This dataset measures groundwater quality in New Zealand’s aquifers based on measurements made at monitored sites. Many factors influence the quality of our groundwater. Nitrogen, which occurs naturally in groundwater, can increase in concentrations due to agricultural and urban land use, and infrastructure such as waste treatment plants. High concentrations of nitrate-nitrogen in groundwater can affect human health and the quality of surrounding rivers and lakes that receive inflows from groundwater. Ammoniacal nitrogen can cause an undesirable smell that may make groundwater unsuitable for drinking water. Natural processes in groundwater can convert nitrate-nitrogen into ammoniacal nitrogen or other forms under some chemical conditions. Surplus phosphorus drains (leaches) into groundwater as dissolved reactive phosphorus. Too much nitrate-nitrogen, ammoniacal nitrogen, and phosphorus can lead to excessive plant and algae growth where groundwater flows into surface water. E. coli in groundwater is measured in colony forming units (cfu) and can indicate the presence of pathogens (disease-causing organisms) from animal or human faeces. The pathogens can cause illness for anyone who ingests them.

More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 99855
Data type Table
Row count 741
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Highly erodible land 2012

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

1108
10
Added
16 Apr 2019

This dataset was first added to MfE Data Service on 16 Apr 2019.

The data identifies five classes of land in New Zealand at risk of erosion:

  1. high landslide risk – delivery to stream
  2. high landslide risk – non-delivery to steam
  3. moderate earthflow risk
  4. severe earthflow risk
  5. gully risk

Landslide erosion is the shallow (approximately 1m) and sudden failure of soil slopes during storm rainfall. Earthflow erosion is the slow downward movement (approximately 1m/year) of wet soil slopes towards waterways. Gully erosion is massive soil erosion that begins at gully heads and expands up hillsides over decadal time scales.

Erosion can have negative consequences on land productivity, water quality (via increased sedimentation and turbidity), the natural form of the land, and infrastructure.

New Zealand experiences high rates of soil erosion. In the North Island, this is mostly due to the historical clearance of forest for agriculture (see also Estimated long-term soil erosion). In contrast, erosion in the South Island is mostly due to natural processes, primarily high rainfall and steep mountain slopes.

It is important to identify areas of land at risk of severe erosion to inform land-use decisions and help prioritise regional soil conservation work.

More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 99877
Data type Table
Row count 240
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed
Results 51 to 60 of 94