Area of coastal seabed trawled by depth class (2008–12)

Licence

Creative Commons Attribution 3.0 New Zealand

You may use this work for commercial purposes.

You must attribute the creator in your own works.

1774
7
Added
25 Oct 2016

This dataset was first added to MfE Data Service on 25 Oct 2016.

Seabed trawling and dredging, when fishing nets or dredges are towed near and along the seabed, can physically damage seabed (benthic) habitats and species. It can also stir up sediment from the seabed, shading (in shallow waters) or smothering marine species. This measure focuses on coastal areas (waters shallower than 250m). Focusing on coastal benthic habitats is important as these face multiple threats (for example from land-based activities) in addition to fishing.

Table ID 53510
Data type Table
Row count 3
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Area of coastal seabed trawled by BOMEC class (2008–12)

Licence

Creative Commons Attribution 3.0 New Zealand

You may use this work for commercial purposes.

You must attribute the creator in your own works.

1739
6
Added
19 Oct 2016

This dataset was first added to MfE Data Service on 19 Oct 2016.

Seabed trawling and dredging, when fishing nets or dredges are towed near and along the seabed, can physically damage seabed (benthic) habitats and species. It can also stir up sediment from the seabed, shading (in shallow waters) or smothering marine species. This measure focuses on coastal areas (waters shallower than 250m). Focusing on coastal benthic habitats is important as these face multiple threats (for example, from land-based activities) in addition to fishing

Table ID 53484
Data type Table
Row count 33
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Area of seabed trawled by BOMEC habitat classes (1990–2011)

Licence

Creative Commons Attribution 3.0 New Zealand

You may use this work for commercial purposes.

You must attribute the creator in your own works.

1770
6
Added
19 Oct 2016

This dataset was first added to MfE Data Service on 19 Oct 2016.

Seabed trawling and dredging (where fishing gear is towed near or along the ocean floor) can physically damage seabed (benthic) habitats and species. These fishing methods can also stir up sediment from the seabed, creating sediment plumes that can smother sensitive species. Recovery times for affected habitats and species depend on their sensitivity and the area affected by trawling or dredging. Bottom trawling is carried out on or near the seabed in both shallow and deep waters. Dredging is carried out on the seabed in shallow waters and targets marine creatures such as scallops. This measure focuses on deepwater areas (waters deeper than 200m).

Table ID 53488
Data type Table
Row count 30
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Area of seabed trawled by depth class (1990–2011)

Licence

Creative Commons Attribution 3.0 New Zealand

You may use this work for commercial purposes.

You must attribute the creator in your own works.

594
7
Added
19 Oct 2016

This dataset was first added to MfE Data Service on 19 Oct 2016.

Seabed trawling and dredging (where fishing gear is towed near or along the ocean floor) can physically damage seabed (benthic) habitats and species. These fishing methods can also stir up sediment from the seabed, creating sediment plumes that can smother sensitive species. Recovery times for affected habitats and species depend on their sensitivity and the area affected by trawling or dredging. Bottom trawling is carried out on or near the seabed in both shallow and deep waters. Dredging is carried out on the seabed in shallow waters and targets marine creatures such as scallops. This measure focuses on deepwater areas (waters deeper than 200m).

Table ID 53486
Data type Table
Row count 4
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Bycatch of protected species: Hector’s and Māui dolphins

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

0
0
Added
16 Oct 2019

This dataset was first added to MfE Data Service on 16 Oct 2019.

The South Island Hector’s and Māui dolphins are among the world’s smallest marine dolphins. Both are subspecies of the Hector’s dolphin Cephalorhynchus hectori. These coastal dolphins are endemic to New Zealand, which means that they are not found anywhere else. The Māui dolphin is found in the inshore waters of the west coast of the North Island, most often from Maunganui Bluff, north of Dargaville, to New Plymouth. The South Island Hector’s dolphin (hereafter referred to as ‘Hector’s dolphin’) is mostly found in the inshore waters around the South Island. Both subspecies are threatened with extinction: Hector’s dolphins have a population estimated at 15,000 and are classified as nationally vulnerable, while Māui dolphins have a population estimated at 63 individuals over one year old and are classified as nationally critical (Baker et al, 2019; MacKenzie & Clement, 2016; Baker et al, 2016).

Dolphins can become entangled in fishing gear used by both commercial and recreational fishers, with set nets posing a particularly high risk. The accidental capture of marine life in fishing gear is typically referred to as bycatch. Reporting the causes of death of protected species and specifically identifying the number of animals killed as a result of fishing activities helps us understand the pressures our protected marine species face from fishing.

DOC’s Hector’s and Māui dolphin incident database 1921-2018 provides data on reported deaths of Hector’s and Māui dolphins.

This indicator measures the number of reported Hector’s and Māui dolphin deaths from entanglement, categorised by type of fishing gear where possible, since 1998. The number of entanglements is compared to the total number of reported deaths.

More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 103967
Data type Table
Row count 337
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Changes in the conservation status of indigenous marine species

Licence

Creative Commons Attribution 3.0 New Zealand

You may use this work for commercial purposes.

You must attribute the creator in your own works.

1625
14
Added
14 Oct 2016

This dataset was first added to MfE Data Service on 14 Oct 2016.

Marine mammals, seabirds, and shorebirds are indicator species for the state of our marine environment. A decreasing population can indicate that the ecosystem is degrading. New Zealand has a diverse range of marine species, many of which are endemic to (only breed in) New Zealand. They are apex species (near the top of the food chain) and can thrive only if their ecosystems are healthy.
This measure reports on the number of indigenous marine species that have had a genuine change in conservation status between two monitoring periods (2008–11 and 2012–14). A change in a species’ conservation status reflects a change in its risk of extinction.

Table ID 53466
Data type Table
Row count 10
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Coastal and oceanic extreme waves 2008 - 2017

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

0
0
Added
16 Oct 2019

This dataset was first added to MfE Data Service on 16 Oct 2019.

Extreme wave events can damage marine ecosystems and affect coastal infrastructure, ocean-based industries, and other human activities.

Changing wave characteristics can have impacts on natural systems, as most coastal and near-shore biological communities can be damaged or destroyed by extreme wave action (Ummenhofer & Mehl, 2017). In another example, extreme waves can disrupt ferries such as those crossing the Cook Strait. Sailings are often cancelled when significant wave heights exceed six metres.

It is important to report on extreme waves to gain greater insight into their frequency, particularly as sea level and storm surges are projected to increase and can compound wave effects.

In this dataset, an extreme wave event is defined as a continuous 12-hour period during which the significant wave height equals or exceeds one of three height thresholds: four, six, or eight metres.

Four-metre-tall waves are considered extreme in the northern-most parts but are more common in the south. For the southern-most parts of New Zealand, eight-metre waves better represent extreme wave events.

More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 104060
Data type Table
Row count 793
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Coastal extreme waves (2008–15)

Licence

Creative Commons Attribution 3.0 New Zealand

You may use this work for commercial purposes.

You must attribute the creator in your own works.

1638
11
Added
19 Oct 2016

This dataset was first added to MfE Data Service on 19 Oct 2016.

Extreme wave indexes estimate the occurrence of extreme wave events in coastal and oceanic waters. Extreme wave indexes estimate the number of times a significant wave height exceeds one of three threshold values for at least 12 hours in 24 marine regions. The three wave-height thresholds are four metres, six metres, and eight metres.
This indicator estimates the exceedances of wave-height thresholds for each year from 2008 to 2015 in coastal areas.
Significant wave height is a measure of the ‘typical’ wave height in a place over a time period. It is four times the standard deviation of the water surface if, for example, you were to measure water moving up and down a jetty piling for an hour. The largest individual wave will typically have a height around twice the significant wave height.
We use three wave-height thresholds because of the regional variation in extreme wave events. In general, the north experiences less exposure to consistently strong winds, and the waves generated by them, than the south. Four-metre tall waves are considered extreme in the northern-most parts of New Zealand but are more common in the south. For the southern-most parts of New Zealand, eight-metre waves better represent extreme wave events.

Table ID 53476
Data type Table
Row count 54
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Coastal sea-level rise 1901 - 2018

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

9
2
Added
14 Oct 2019

This dataset was first added to MfE Data Service on 14 Oct 2019.

This indicator measures the rise in annual mean coastal sea level relative to land. The national mean is derived from four long-term monitoring locations across New Zealand: Auckland, Wellington, Dunedin and Lyttelton. We also report the trends over time, from the beginning of our records until 2018. Relative sea-level rise includes the vertical land movement of the surrounding area (for example, a sinking landmass increases the rise in ocean sea level).

We report the change in annual mean coastal sea level to 2018 against the established baseline (mean sea level for 1986–2005) for the long-term sites plus an additional two sites: Moturiki (Mount Maunganui) and New Plymouth. These are not included in the national mean due to shorter records. We also measure the national annual sea-level rise for two time periods: the start of the records to 1960, and 1961–2018.

More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 104055
Data type Table
Row count 524
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Commercial catch for sharks and rays

Licence

Creative Commons Attribution 3.0 New Zealand

You may use this work for commercial purposes.

You must attribute the creator in your own works.

622
27
Added
24 Oct 2016

This dataset was first added to MfE Data Service on 24 Oct 2016.

New Zealand waters have at least 117 species of chondrichthyans (sharks, rays, and other cartilaginous fish species). They are particularly vulnerable to overfishing because they are long-lived, mature slowly, and have a low reproductive rate. Chondrichthyans are important for healthy ocean ecosystems, and reporting their commercial catch and bycatch helps us understand the sustainability of our fisheries.

Table ID 53508
Data type Table
Row count 453
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed
Results 1 to 10 of 40