Creative Commons Attribution 4.0 International
You may use this work for commercial purposes.
You must attribute the creator in your own works.
This dataset was first added to MfE Data Service on 14 Oct 2020.
DATA SOURCE: National Institute for Water and Atmospheric Research (NIWA)
[Technical report available at www.mfe.govt.nz/publications/environmental-reporti...]
Adapted by Ministry for the Environment and Statistics New Zealand to provide for environmental reporting transparency
Dataset used to develop the "Greenhouse gas concentrations" indicator [available at www.stats.govtnz/indicators/greenhouse-gas-concent...]
This lowest aggregation dataset, was used to develop two ‘Our Atmosphere and Climate’ indicators. See Statistics New Zealand indicator links for specific methodologies and state/trend datasets (see ‘Shiny App’ downloads).
1) Rainfall (www.stats.govt.nz/indicators/rainfall)
2) Extreme rainfall (a. www.stats.govt.nz/indicators/extreme-rainfall
This dataset shows daily rainfall at 30 sites across New Zealand from 1960 to 2019.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.
Table ID | 105055 |
---|---|
Data type | Table |
Row count | 657450 |
Services | Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed |
Creative Commons Attribution 4.0 International
You may use this work for commercial purposes.
You must attribute the creator in your own works.
This dataset was first added to MfE Data Service on 16 Oct 2017.
A glacier is a body of slow-moving ice, at least 1 hectare in area that has persisted for two decades or longer. New Zealand has 3,144 glaciers. Most are located along the Southern Alps on the South Island, although Mount Ruapehu on the North Island supports 18 glaciers. New Zealand’s large glaciers are noteworthy for their large debris cover. The exceptions, Franz Joseph and Fox glaciers, are rare examples of glaciers that terminate in a rainforest.
Glacier volume is strongly influenced by climate factors, such as temperature and precipitation, which scientists expect to be affected by the warming climate. Glacial ice is an important water resource. Changes to ice storage and melting can affect ecological and hydropower resources downstream, as well as important cultural values and tourism.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.
Table ID | 89472 |
---|---|
Data type | Table |
Row count | 40 |
Services | Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed |
Creative Commons Attribution 4.0 International
You may use this work for commercial purposes.
You must attribute the creator in your own works.
This dataset was first added to MfE Data Service on 13 Oct 2017.
Two measures of rainfall intensity - percent of annual precipitation in the 95th percentile (r95ptot) and annual maximum one-day rainfall (rx1day).
Intense rainfall can result in flash floods or land slips that damage homes and property, disrupt transportation, and endanger lives. It can also interfere with recreation and increase erosion. Changes to the frequency of intense rainfall events can alter biodiversity.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.
Table ID | 89435 |
---|---|
Data type | Table |
Row count | 1710 |
Services | Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed |
Creative Commons Attribution 4.0 International
You may use this work for commercial purposes.
You must attribute the creator in your own works.
This dataset was first added to MfE Data Service on 13 Oct 2017.
Trends in percent of annual rainfall in the 95th percentile (r95ptot), 1960–2016.
Intense rainfall can result in flash floods or land slips that damage homes and property, disrupt transportation, and endanger lives. It can also interfere with recreation and increase erosion. Changes to the frequency of intense rainfall events can alter biodiversity.
Trend direction was assessed using the Theil-Sen estimator and the Two One-Sided Test (TOST) for equivalence at the 95% confidence level.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.
Table ID | 89434 |
---|---|
Data type | Table |
Row count | 30 |
Services | Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed |
Creative Commons Attribution 4.0 International
You may use this work for commercial purposes.
You must attribute the creator in your own works.
This dataset was first added to MfE Data Service on 13 Oct 2017.
Trends in annual maximum one-day rainfall (rx1day), 1960–2016.
Intense rainfall can result in flash floods or land slips that damage homes and property, disrupt transportation, and endanger lives. It can also interfere with recreation and increase erosion. Changes to the frequency of intense rainfall events can alter biodiversity.
Trend direction was assessed using the Theil-Sen estimator and the Two One-Sided Test (TOST) for equivalence at the 95% confidence level.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.
Table ID | 89433 |
---|---|
Data type | Table |
Row count | 30 |
Services | Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed |
Creative Commons Attribution 4.0 International
You may use this work for commercial purposes.
You must attribute the creator in your own works.
This dataset was first added to MfE Data Service on 12 Oct 2017.
Winter rainfall trends for 30 representative sites from 1960–2016.
Rain is vital for life – it supplies the water we need to drink and to grow our food, keeps our ecosystems healthy, and supplies our electricity. New Zealand’s mountainous terrain and location in the roaring forties mean rainfall varies across the country. Changes in rainfall amount or timing can significantly affect agriculture, energy, recreation, and the environment. For example, an increase or decrease of rainfall in spring can have marked effects on crops or fish populations.
Trend direction was assessed using the Theil-Sen estimator and the Two One-Sided Test (TOST) for equivalence at the 95% confidence level.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.
Table ID | 89405 |
---|---|
Data type | Table |
Row count | 30 |
Services | Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed |
Creative Commons Attribution 4.0 International
You may use this work for commercial purposes.
You must attribute the creator in your own works.
This dataset was first added to MfE Data Service on 12 Oct 2017.
Summer rainfall trends for 30 representative sites from 1960–2016.
Rain is vital for life – it supplies the water we need to drink and to grow our food, keeps our ecosystems healthy, and supplies our electricity. New Zealand’s mountainous terrain and location in the roaring forties mean rainfall varies across the country. Changes in rainfall amount or timing can significantly affect agriculture, energy, recreation, and the environment. For example, an increase or decrease of rainfall in spring can have marked effects on crops or fish populations.
Trend direction was assessed using the Theil-Sen estimator and the Two One-Sided Test (TOST) for equivalence at the 95% confidence level.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.
Table ID | 89404 |
---|---|
Data type | Table |
Row count | 30 |
Services | Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed |
Creative Commons Attribution 4.0 International
You may use this work for commercial purposes.
You must attribute the creator in your own works.
This dataset was first added to MfE Data Service on 12 Oct 2017.
Spring rainfall trends for 30 representative sites from 1960–2016.
Rain is vital for life – it supplies the water we need to drink and to grow our food, keeps our ecosystems healthy, and supplies our electricity. New Zealand’s mountainous terrain and location in the roaring forties mean rainfall varies across the country. Changes in rainfall amount or timing can significantly affect agriculture, energy, recreation, and the environment. For example, an increase or decrease of rainfall in spring can have marked effects on crops or fish populations.
Trend direction was assessed using the Theil-Sen estimator and the Two One-Sided Test (TOST) for equivalence at the 95% confidence level.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.
Table ID | 89403 |
---|---|
Data type | Table |
Row count | 30 |
Services | Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed |
Creative Commons Attribution 4.0 International
You may use this work for commercial purposes.
You must attribute the creator in your own works.
This dataset was first added to MfE Data Service on 12 Oct 2017.
Autumn rainfall trends for 30 representative sites from 1960–2016.
Rain is vital for life – it supplies the water we need to drink and to grow our food, keeps our ecosystems healthy, and supplies our electricity. New Zealand’s mountainous terrain and location in the roaring forties mean rainfall varies across the country. Changes in rainfall amount or timing can significantly affect agriculture, energy, recreation, and the environment. For example, an increase or decrease of rainfall in spring can have marked effects on crops or fish populations.
Trend direction was assessed using the Theil-Sen estimator and the Two One-Sided Test (TOST) for equivalence at the 95% confidence level.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.
Table ID | 89402 |
---|---|
Data type | Table |
Row count | 30 |
Services | Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed |
Creative Commons Attribution 4.0 International
You may use this work for commercial purposes.
You must attribute the creator in your own works.
This dataset was first added to MfE Data Service on 12 Oct 2017.
Daily rainfall values for 30 representative sites from 1960–2016.
Rain is vital for life – it supplies the water we need to drink and to grow our food, keeps our ecosystems healthy, and supplies our electricity. New Zealand’s mountainous terrain and location in the roaring forties mean rainfall varies across the country. Changes in rainfall amount or timing can significantly affect agriculture, energy, recreation, and the environment. For example, an increase or decrease of rainfall in spring can have marked effects on crops or fish populations.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.
Table ID | 89401 |
---|---|
Data type | Table |
Row count | 617808 |
Services | Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed |