Forest carbon stocks, 1990–2015

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

3560
20
Added
17 Oct 2017

This dataset was first added to MfE Data Service on 17 Oct 2017.

Forest carbon stocks and areas, including stock changes, areas, and deforestation.
New Zealand’s indigenous and exotic forests absorb carbon dioxide (CO2) from the atmosphere through photosynthesis and store the carbon as biomass and in the soil. On average, more than twice as much carbon per hectare is stored in New Zealand’s mature indigenous forests than in exotic forests planted for wood production. Regenerating indigenous forests are also an important store of carbon, adding carbon every year as they grow. Total carbon stored in exotic forests will fluctuate over decades as the forests grow from seedlings to mature trees, are harvested, and replanted. Because CO2 is the major driver of climate change, forests provide important mitigation services and help New Zealand meet its climate change commitments.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89475
Data type Table
Row count 1066
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Influenza hospitalisations, 2000–16

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

3536
8
Added
14 Oct 2017

This dataset was first added to MfE Data Service on 14 Oct 2017.

Influenza is a potentially life-threatening virus that spreads quickly from person to person. It is a significant public health issue in this country, with 10–20 percent of New Zealanders infected every year. While influenza can occur all year round, incidence generally peaks in winter and spring in New Zealand. Some studies suggest this is because the virus can survive longer outside the body in periods of colder weather and low humidity (dry conditions).
Influenza infections may decline as our climate changes. Warmer projected temperatures and higher humidity during winter and spring may contribute to reduced annual influenza rates. However, influenza infection is also affected by factors besides temperature and humidity.
These data are reported in an annual surveillance report by the Institute of Environmental Science and Research. See the 2015 report for more information (Institute of Environmental Science and Research, 2016).
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89457
Data type Table
Row count 17
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

The annual SOI compared with New Zealand's detrended temperature series, 1908/9–2015/6

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

3474
9
Added
12 Oct 2017

This dataset was first added to MfE Data Service on 12 Oct 2017.

The El Niño Southern Oscillation (ENSO) is the movement of warm equatorial water across the Pacific Ocean and the atmospheric response. It occurs every 2–7 years, typically lasting 6–18 months. ENSO has three phases: neutral, El Niño and La Niña. In New Zealand an El Niño phase in summer can bring increased westerly winds, more rain in the west, and drought in the east; in winter it can lead to more cool southerly winds. During a La Niña phase we may experience more north-easterly winds, wetter conditions in the north and east, and higher sea levels.
This dataset relates to annual ENSO and detrended temperature data.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89380
Data type Table
Row count 216
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Trends in ozone concentrations, 1978–2017

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

3580
5
Added
14 Oct 2017

This dataset was first added to MfE Data Service on 14 Oct 2017.

NIWA supplied ozone data in two forms, with different starting dates:
- measurements made using a Dobson spectrophotometer (number 72), from 1987
- data assimilated from satellite measurements recalibrated against the global Dobson network, from 1978.
NIWA takes measurements using the Dobson spectrophotometer 72 under clear-sky, direct sunlight conditions at Lauder in Otago. There are gaps in the time series due to days with cloud, rain, or too much wind. However, over the whole period, each individual calendar day of the year was measured. This allows us to calculate statistics based on the day of the year.
The trend was assessed using the Theil-Sen estimator and the Two One-Sided Test (TOST) for equivalence at the 95% confidence level.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89465
Data type Table
Row count 3
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Autumn rainfall trends, 1960–2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

3499
11
Added
12 Oct 2017

This dataset was first added to MfE Data Service on 12 Oct 2017.

Autumn rainfall trends for 30 representative sites from 1960–2016.
Rain is vital for life – it supplies the water we need to drink and to grow our food, keeps our ecosystems healthy, and supplies our electricity. New Zealand’s mountainous terrain and location in the roaring forties mean rainfall varies across the country. Changes in rainfall amount or timing can significantly affect agriculture, energy, recreation, and the environment. For example, an increase or decrease of rainfall in spring can have marked effects on crops or fish populations.
Trend direction was assessed using the Theil-Sen estimator and the Two One-Sided Test (TOST) for equivalence at the 95% confidence level.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89402
Data type Table
Row count 30
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Oceanic sea surface temperature anomaly

Licence

Creative Commons Attribution 3.0 New Zealand

You may use this work for commercial purposes.

You must attribute the creator in your own works.

3338
20
Added
01 Oct 2015

This dataset was first added to MfE Data Service on 01 Oct 2015.

The ocean waters surrounding New Zealand vary in temperature from north to south. They interact with heat and moisture in the atmosphere and affect our weather. Sea surface temperature changes with climate drivers such as El Niño, and will change with climate change. The sea surface temperature anomaly provides an indication of the heat change in the ocean.
Long-term changes and short-term variability in sea-surface temperatures can affect marine processes, habitats, and species. some species may find it hard to survive in changing environmental conditions.
The oceanic sea surface temperature data comes from the NIWA Sea surface temperature Archive (NSA). There are 2 datasets, of NSA Annual means and NSA Annual Anomolies, covering the Tasman, subtropical (STW) and Southern Antarctic (SAW) area and the total area. The data is available from 1993 to 2013 and the unit of measure is degrees celcius.
For further information please see:
Uddstrom, MJ (2015) Sea Surface Temperature Data and Analysis for the 2015 Synthesis Report. For Ministry for the Environment. Available at data.mfe.govt.nz/x/hRbGUJ on the Ministry for the Environment dataservice (data.mfe.govt.nz).
This dataset relates to the "Sea surface temperature" measure on the Environmental Indicators, Te taiao Aotearoa website.

Table ID 52582
Data type Table
Row count 84
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Southern annular mode (1887–2014)

Licence

Creative Commons Attribution 3.0 New Zealand

You may use this work for commercial purposes.

You must attribute the creator in your own works.

3268
30
Added
01 Oct 2015

This dataset was first added to MfE Data Service on 01 Oct 2015.

The Southern Annular Mode (SAM) is an index that describes climate variation around the South Pole and Antarctica, as far north as New Zealand. It indicates short-term climate variations that can influence New Zealand’s climate. Such climate variations can impact on our environment, industries, and recreational activities.
The variation is caused by the movement of a low-pressure belt that generates westerly winds. During a negative phase, the low pressure belt moves north, towards the equator. In New Zealand, this can cause increased westerly winds, unsettled weather, and storm activity over most of the country. Over the southern oceans, there are relatively less westerly winds and less storm activity.
During a positive phase, the low pressure belt moves south towards Antarctica. In New Zealand, this can cause relatively light winds and more settled weather. Over the southern oceans, there is increased westerly winds and storm activity.
This dataset relates to the "Southern annular mode" measure on the Environmental Indicators, Te taiao Aotearoa website.

Table ID 52592
Data type Table
Row count 128
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Days with wind gusts greater than gale force (1975–13)

Licence

Creative Commons Attribution 3.0 New Zealand

You may use this work for commercial purposes.

You must attribute the creator in your own works.

3243
37
Added
01 Oct 2015

This dataset was first added to MfE Data Service on 01 Oct 2015.

Strong wind events can cause significant damage, for example, to trees and buildings. They can occur with frontal weather systems and around strong convection events, such as thunderstorms. Global climate change may change the frequency of damaging wind events in almost all areas in New Zealand in winter and decrease the frequency in summer. Monitoring can help us gauge the potential of, and prepare for, such events.
Further information can be found in:
Tait, A, Macara, G, & Paul, V. (2014) Preparation of climate datasets for the 2015 Environmental Synthesis Report: Temperature, Rainfall, Wind, Sunshine and Soil Moisture. Prepared for Ministry for the Environment. Available at data.mfe.govt.nz/x/Fwn9AL on the Ministry for the Environment dataservice (data.mfe.govt.nz/).
This dataset relates to the "Occurrence of potentially damaging wind" measure on the Environmental Indicators, Te taiao Aotearoa website.

Table ID 52585
Data type Table
Row count 8203
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Average daily ozone concentrations, 1979–2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

3584
16
Added
14 Oct 2017

This dataset was first added to MfE Data Service on 14 Oct 2017.

NIWA supplied ozone data in two forms, with different starting dates:
- measurements made using a Dobson spectrophotometer (number 72), from 1987
- data assimilated from satellite measurements recalibrated against the global Dobson network, from 1978.
NIWA takes measurements using the Dobson spectrophotometer 72 under clear-sky, direct sunlight conditions at Lauder in Otago. There are gaps in the time series due to days with cloud, rain, or too much wind. However, over the whole period, each individual calendar day of the year was measured. This allows us to calculate statistics based on the day of the year.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89464
Data type Table
Row count 1098
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

The annual SOI compared with New Zealand's detrended temperature series (1909–2013)

Licence

Creative Commons Attribution 3.0 New Zealand

You may use this work for commercial purposes.

You must attribute the creator in your own works.

3249
20
Added
01 Oct 2015

This dataset was first added to MfE Data Service on 01 Oct 2015.

El Niño Southern Oscillation (ENSO). It is an important predictor of how tropical oceans and climate might influence New Zealand’s climate. Being able to predict the timing and intensity of an El Niño or La Niña climate phase is important in predicting and preparing for extreme climatic conditions, such as strong winds, heavy rain, or drought. Such extreme conditions can impact on our environment, industries, and recreational activities. ENSO is commonly measured using the Southern Oscillation Index (SOI).
In New Zealand, an El Niño phase can cause colder winters. In summer it can result in more rain in the west and drought in the east. A La Niña phase can cause warmer temperatures, more rain in the north-east, and less rain in the south and south-west.
This dataset relates to the "El Niño Southern Oscillation" measure on the Environmental Indicators, Te taiao Aotearoa website.

Table ID 52590
Data type Table
Row count 105
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed
Results 41 to 50 of 106