Daily peak UV index value, 1981–2017

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

3326
20
Added
14 Oct 2017

This dataset was first added to MfE Data Service on 14 Oct 2017.

Daily peak UV index values at Invercargill, Lauder (Otago region), Christchurch, Paraparaumu (Wellington region), and Leigh (Auckland region). The strength of UV light is expressed as a solar UV index, starting from 0 (no UV) to 11+ (extreme).
Exposure to the sun's ultraviolet (UV) light helps our bodies make vitamin D, which we need for healthy bones and muscles. However, too much exposure to UV light can cause skin cancer. New Zealand has naturally high UV levels, and monitoring UV levels helps us understand the occurrence of skin cancer.
Ozone in the upper atmosphere absorbs some of the sun’s UV light, protecting us from harmful levels. The amount of UV radiation reaching the ground varies in relation to changes in the atmospheric ozone concentrations. The Antarctic ozone hole lies well to the south of New Zealand and does not have a large effect on New Zealand’s ozone concentrations.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89468
Data type Table
Row count 38993
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Monthly average peak UV index value, 1981–2017

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

4930
19
Added
14 Oct 2017

This dataset was first added to MfE Data Service on 14 Oct 2017.

Monthly average peak UV index values at Invercargill, Lauder (Otago region), Christchurch, Paraparaumu (Wellington region), and Leigh (Auckland region). The strength of UV light is expressed as a solar UV index, starting from 0 (no UV) to 11+ (extreme).
Exposure to the sun's ultraviolet (UV) light helps our bodies make vitamin D, which we need for healthy bones and muscles. However, too much exposure to UV light can cause skin cancer. New Zealand has naturally high UV levels, and monitoring UV levels helps us understand the occurrence of skin cancer.
Ozone in the upper atmosphere absorbs some of the sun’s UV light, protecting us from harmful levels. The amount of UV radiation reaching the ground varies in relation to changes in the atmospheric ozone concentrations. The Antarctic ozone hole lies well to the south of New Zealand and does not have a large effect on New Zealand’s ozone concentrations.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89467
Data type Table
Row count 65
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Ozone hole, 1979–2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

3558
38
Added
14 Oct 2017

This dataset was first added to MfE Data Service on 14 Oct 2017.

Ozone is a gas that forms a naturally occurring layer in the upper atmosphere (stratosphere), protecting Earth from the sun’s ultraviolet (UV) light. The ozone hole is an area of reduced stratospheric ozone. It forms in spring over Antarctica because of ozone-depleting substances (ODSs) produced from human activities. The ozone hole has started to shrink due to the phase-out of ODSs, and it is possible that it will cease to form by the middle of this century.
The ozone hole does not have a large effect on the concentration of ozone over New Zealand. However, when the ozone hole breaks up in spring, it can send ‘plumes’ of ozone-depleted air over New Zealand. Reporting on the state of the ozone hole helps us understand the state of ozone concentrations globally.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89466
Data type Table
Row count 37
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Trends in ozone concentrations, 1978–2017

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

3076
5
Added
14 Oct 2017

This dataset was first added to MfE Data Service on 14 Oct 2017.

NIWA supplied ozone data in two forms, with different starting dates:
- measurements made using a Dobson spectrophotometer (number 72), from 1987
- data assimilated from satellite measurements recalibrated against the global Dobson network, from 1978.
NIWA takes measurements using the Dobson spectrophotometer 72 under clear-sky, direct sunlight conditions at Lauder in Otago. There are gaps in the time series due to days with cloud, rain, or too much wind. However, over the whole period, each individual calendar day of the year was measured. This allows us to calculate statistics based on the day of the year.
The trend was assessed using the Theil-Sen estimator and the Two One-Sided Test (TOST) for equivalence at the 95% confidence level.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89465
Data type Table
Row count 3
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Average daily ozone concentrations, 1979–2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

2993
12
Added
14 Oct 2017

This dataset was first added to MfE Data Service on 14 Oct 2017.

NIWA supplied ozone data in two forms, with different starting dates:
- measurements made using a Dobson spectrophotometer (number 72), from 1987
- data assimilated from satellite measurements recalibrated against the global Dobson network, from 1978.
NIWA takes measurements using the Dobson spectrophotometer 72 under clear-sky, direct sunlight conditions at Lauder in Otago. There are gaps in the time series due to days with cloud, rain, or too much wind. However, over the whole period, each individual calendar day of the year was measured. This allows us to calculate statistics based on the day of the year.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89464
Data type Table
Row count 1098
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Annual ozone concentrations, 1979–2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

2971
10
Added
14 Oct 2017

This dataset was first added to MfE Data Service on 14 Oct 2017.

NIWA supplied ozone data in two forms, with different starting dates:
- measurements made using a Dobson spectrophotometer (number 72), from 1987
- data assimilated from satellite measurements recalibrated against the global Dobson network, from 1978.
NIWA takes measurements using the Dobson spectrophotometer 72 under clear-sky, direct sunlight conditions at Lauder in Otago. There are gaps in the time series due to days with cloud, rain, or too much wind. However, over the whole period, each individual calendar day of the year was measured. This allows us to calculate statistics based on the day of the year.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89463
Data type Table
Row count 114
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Melanoma registration trends, 1996–2013

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

2858
4
Added
14 Oct 2017

This dataset was first added to MfE Data Service on 14 Oct 2017.

New Zealand and Australia have the world’s highest rates of melanoma, the most serious type of skin cancer. Melanoma is mainly caused by exposure to ultraviolet (UV) light, usually from the sun. New Zealand has naturally high UV levels, especially during summer.
The risk of developing melanoma is affected by factors such as skin colour and type, family history, and the amount of sun exposure. Melanoma can affect people at any age, but the chance of developing a melanoma increases with age. We report on age-standardised rates of melanoma to account for the increasing proportion of older people in our population.
Our data on melanoma registrations come from the New Zealand Cancer Registry and the Ministry of Health's Mortality Collection. The passing of the Cancer Registry Act 1993 and Cancer Registry Regulations 1994 led to significant improvements in data quality and coverage (Ministry of Health, 2013). A sharp increase in registrations after 1993 is likely to have been related to these legislative and regulatory changes; for this reason we have only analysed data from 1996.
Trend direction was assessed using the Theil-Sen estimator and the Two One-Sided Test (TOST) for equivalence at the 95% confidence level.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89460
Data type Table
Row count 57
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Melanoma registration rates, by age group, 1996–2015

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

2874
5
Added
14 Oct 2017

This dataset was first added to MfE Data Service on 14 Oct 2017.

This csv reports melanoma registration rates, per 100,000 population, by age groups (eg 0–24 years old, 25–44 years old).
New Zealand and Australia have the world’s highest rates of melanoma, the most serious type of skin cancer. Melanoma is mainly caused by exposure to ultraviolet (UV) light, usually from the sun. New Zealand has naturally high UV levels, especially during summer.
The risk of developing melanoma is affected by factors such as skin colour and type, family history, and the amount of sun exposure. Melanoma can affect people at any age, but the chance of developing a melanoma increases with age. We report on age-standardised rates of melanoma to account for the increasing proportion of older people in our population.
Our data on melanoma registrations come from the New Zealand Cancer Registry and the Ministry of Health's Mortality Collection. The passing of the Cancer Registry Act 1993 and Cancer Registry Regulations 1994 led to significant improvements in data quality and coverage (Ministry of Health, 2013). A sharp increase in registrations after 1993 is likely to have been related to these legislative and regulatory changes; for this reason we have only analysed data from 1996.
2014–15 data are provisional and subject to change.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89459
Data type Table
Row count 360
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Melanoma registration rates, 1948–2015

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

2779
10
Added
14 Oct 2017

This dataset was first added to MfE Data Service on 14 Oct 2017.

New Zealand and Australia have the world’s highest rates of melanoma, the most serious type of skin cancer. Melanoma is mainly caused by exposure to ultraviolet (UV) light, usually from the sun. New Zealand has naturally high UV levels, especially during summer.
The risk of developing melanoma is affected by factors such as skin colour and type, family history, and the amount of sun exposure. Melanoma can affect people at any age, but the chance of developing a melanoma increases with age. We report on age-standardised rates of melanoma to account for the increasing proportion of older people in our population.
Our data on melanoma registrations come from the New Zealand Cancer Registry and the Ministry of Health's Mortality Collection. The passing of the Cancer Registry Act 1993 and Cancer Registry Regulations 1994 led to significant improvements in data quality and coverage (Ministry of Health, 2013). A sharp increase in registrations after 1993 is likely to have been related to these legislative and regulatory changes; for this reason we have only analysed data from 1996.
2014–15 data are provisional and subject to change.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89458
Data type Table
Row count 204
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Influenza hospitalisations, 2000–16

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

3116
7
Added
14 Oct 2017

This dataset was first added to MfE Data Service on 14 Oct 2017.

Influenza is a potentially life-threatening virus that spreads quickly from person to person. It is a significant public health issue in this country, with 10–20 percent of New Zealanders infected every year. While influenza can occur all year round, incidence generally peaks in winter and spring in New Zealand. Some studies suggest this is because the virus can survive longer outside the body in periods of colder weather and low humidity (dry conditions).
Influenza infections may decline as our climate changes. Warmer projected temperatures and higher humidity during winter and spring may contribute to reduced annual influenza rates. However, influenza infection is also affected by factors besides temperature and humidity.
These data are reported in an annual surveillance report by the Institute of Environmental Science and Research. See the 2015 report for more information (Institute of Environmental Science and Research, 2016).
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89457
Data type Table
Row count 17
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed
Results 11 to 20 of 106