Ozone hole, 1979–2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

3224
36
Added
14 Oct 2017

This dataset was first added to MfE Data Service on 14 Oct 2017.

Ozone is a gas that forms a naturally occurring layer in the upper atmosphere (stratosphere), protecting Earth from the sun’s ultraviolet (UV) light. The ozone hole is an area of reduced stratospheric ozone. It forms in spring over Antarctica because of ozone-depleting substances (ODSs) produced from human activities. The ozone hole has started to shrink due to the phase-out of ODSs, and it is possible that it will cease to form by the middle of this century.
The ozone hole does not have a large effect on the concentration of ozone over New Zealand. However, when the ozone hole breaks up in spring, it can send ‘plumes’ of ozone-depleted air over New Zealand. Reporting on the state of the ozone hole helps us understand the state of ozone concentrations globally.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89466
Data type Table
Row count 37
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Daily peak UV index values, Invercargill, Leigh, Lauder, Paraparaumu and Christchurch (1981–2014)

Licence

Creative Commons Attribution 3.0 New Zealand

You may use this work for commercial purposes.

You must attribute the creator in your own works.

3149
21
Added
01 Oct 2015

This dataset was first added to MfE Data Service on 01 Oct 2015.

Too much exposure to the sun's ultraviolet (UV) radiation can cause skin cancer. Ozone absorbs some UV radiation, and UV levels can vary in relation to changes in atmospheric ozone. Monitoring UV levels can help us understand current skin cancer risk.
The Lauder spectroradiometer (UVM dataset) data are used to assure the reliability of broad-band erythermal UV (RB dataset) from five sites. Measurements supplied are daily peak, noon-time mean, and total daily dose of erythemal (skin-reddening) UV.
Further information can be found in:
Liley, B, Querel, B, & McKenzie, R (2014). Measurements of Ozone and UV for New Zealand. Prepared for the Ministry for the Environment, Wellington. Available at data.mfe.govt.nz/x/LoPyPo on the Ministry for the Environment dataservice (data.mfe.govt.nz/).
This dataset relates to the "UV intensity" measure on the Environmental Indicators, Te taiao Aotearoa website.

Table ID 52584
Data type Table
Row count 60760
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

New Zealand's national temperature, 1909–2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

3097
63
Added
14 Oct 2017

This dataset was first added to MfE Data Service on 14 Oct 2017.

This dataset relates to NIWA's 'seven-station' temperature series uses temperature measurements from seven 'climate stations'.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89453
Data type Table
Row count 424
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Lightning strikes, 2001–2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

3029
105
Added
16 Oct 2017

This dataset was first added to MfE Data Service on 16 Oct 2017.

Lightning is the discharge of electricity from thunderstorms and can occur within a cloud, between clouds, or between a cloud and the ground. By international standards, lightning does not occur frequently around New Zealand. However, ground strikes can injure or kill people and livestock, damage property and infrastructure, and, although rarely in New Zealand, spark forest fires. Thunderstorms are often associated with other severe weather events, such as strong wind gusts and hail. Thunderstorms may increase in frequency and intensity with climate change.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89470
Data type Table
Row count 2903389
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Annual rainfall trends, 1960–2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

3097
36
Added
12 Oct 2017

This dataset was first added to MfE Data Service on 12 Oct 2017.

Annual rainfall trends for 30 representative sites from 1960–2016.
Rain is vital for life – it supplies the water we need to drink and to grow our food, keeps our ecosystems healthy, and supplies our electricity. New Zealand’s mountainous terrain and location in the roaring forties mean rainfall varies across the country. Changes in rainfall amount or timing can significantly affect agriculture, energy, recreation, and the environment. For example, an increase or decrease of rainfall in spring can have marked effects on crops or fish populations.
Trend direction was assessed using the Theil-Sen estimator and the Two One-Sided Test (TOST) for equivalence at the 95% confidence level.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89400
Data type Table
Row count 30
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Carbon dioxide concentrations at Baring Head (1972–2013)

Licence

Creative Commons Attribution 3.0 New Zealand

You may use this work for commercial purposes.

You must attribute the creator in your own works.

3078
15
Added
01 Oct 2015

This dataset was first added to MfE Data Service on 01 Oct 2015.

Greenhouse gases (GHGS) in the atmosphere absorb heat radiating from Earth, warming the atmosphere. Emissions from human activities increase the concentrations of these gases. Increases in these gases increase ocean acidity and are extremely likely to contribute to increased global temperatures, sea levels, and glacier melt. Monitoring GHG concentrations allows us to infer long-term impacts on ocean acidity, temperature, sea level, and glaciers.
Greenhouse gases are generally well mixed around the globe. We use ‘clean air’ observations from Baring Head, near Wellington, to estimate global concentrations of the greenhouse gases – carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and carbon monoxide (CO). These observations are made only when the air’s trajectory is from the south and away from any likely local sources of gas emissions. This gives an estimate representative of the concentrations over the Southern Ocean.
The observations tell us how the global atmosphere responds to increasing emissions of greenhouse gases, and are an internationally representative measure of global concentrations. However, the Southern Hemisphere has slightly less greenhouse gas concentrations than the Northern Hemisphere, as well as a smaller seasonal variation.
Further information can be found in:
Mikaloff Fletcher, SE, & Nichol, S (2014) Measurements of Trace Gases in Well-mixed Air at Baring Head: Trends in carbon dioxide, methane, nitrous oxide and carbon monoxide. Prepared for Ministry for the Environment. Available at data.mfe.govt.nz/x/cZzREp on the Ministry for the Environment dataservice (data.mfe.govt.nz/).
This dataset relates to the "Greenhouse gas concentrations" measure on the Environmental Indicators, Te taiao Aotearoa website.

Table ID 52568
Data type Table
Row count 493
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Southern Annular Mode annual values, 1887–2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

3051
19
Added
12 Oct 2017

This dataset was first added to MfE Data Service on 12 Oct 2017.

A consistent band of westerly wind flows across the Southern Hemisphere and circles the South Pole. The Southern Annular Mode (SAM) describes how this band moves, either north towards the equator (negative phase) or south towards Antarctica (positive phase). A negative phase typically causes increased westerlies, unsettled weather, and storms in New Zealand. A phase can last several weeks, but changes can be rapid and unpredictable.
The SAM is one of three climate oscillations that affect our weather. The resulting changes in air pressure, sea temperature, and wind direction can last for weeks to decades, depending on the oscillation.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89383
Data type Table
Row count 168
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Growing degree days annual growing season averages and totals, 1972/3–2015/6

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

3037
19
Added
12 Oct 2017

This dataset was first added to MfE Data Service on 12 Oct 2017.

Growing degree days (GDD) measures the amount of warmth available for plant and insect growth and can be used to predict when flowers will bloom and crops and insects will mature. GDD counts the total number of degrees Celsius each day is above a threshold temperature. In this report we used 10 degrees Celsius. Increased GDD means that plants and insects reach maturity faster, provided that other conditions necessary for growth are favourable, such as sufficient moisture and nutrients. As a measure of temperature, GDD experiences short-term changes in response to climate variations, such as El Niño, and in the longer-term is affected by our warming climate.
This dataset gives the average number of GDD over growing seasons (July 1 – June 30 of the following year) for New Zealand, the North and South Islands, and for all 30 sites.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89393
Data type Table
Row count 1389
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Daily peak, noon, and SED UV (UVM dataset)

Licence

Creative Commons Attribution 3.0 New Zealand

You may use this work for commercial purposes.

You must attribute the creator in your own works.

2988
35
Added
01 Oct 2015

This dataset was first added to MfE Data Service on 01 Oct 2015.

Too much exposure to the sun's ultraviolet (UV) radiation can cause skin cancer. Ozone absorbs some UV radiation, and UV levels can vary in relation to changes in atmospheric ozone. Monitoring UV levels can help us understand current skin cancer risk.
The most reliable data on solar UV irradiance in New Zealand are from spectroradiometers developed and operated by NIWA at Lauder since summer 1989/90. The dataset supplied begins in 1993, and measurements includee daily peak, noon-time mean, and total daily dose of erythemal (skin-reddening) UV.
Further information can be found in:
Liley, B, Querel, B, & McKenzie, R (2014). Measurements of Ozone and UV for New Zealand. Prepared for the Ministry for the Environment, Wellington. Available at data.mfe.govt.nz/x/LoPyPo on the Ministry for the Environment dataservice (data.mfe.govt.nz/).
This dataset relates to the "UV intensity" measure on the Environmental Indicators, Te taiao Aotearoa website.

Table ID 52583
Data type Table
Row count 7530
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Daily peak UV index value, 1981–2017

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

2997
19
Added
14 Oct 2017

This dataset was first added to MfE Data Service on 14 Oct 2017.

Daily peak UV index values at Invercargill, Lauder (Otago region), Christchurch, Paraparaumu (Wellington region), and Leigh (Auckland region). The strength of UV light is expressed as a solar UV index, starting from 0 (no UV) to 11+ (extreme).
Exposure to the sun's ultraviolet (UV) light helps our bodies make vitamin D, which we need for healthy bones and muscles. However, too much exposure to UV light can cause skin cancer. New Zealand has naturally high UV levels, and monitoring UV levels helps us understand the occurrence of skin cancer.
Ozone in the upper atmosphere absorbs some of the sun’s UV light, protecting us from harmful levels. The amount of UV radiation reaching the ground varies in relation to changes in the atmospheric ozone concentrations. The Antarctic ozone hole lies well to the south of New Zealand and does not have a large effect on New Zealand’s ozone concentrations.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89468
Data type Table
Row count 38993
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed
Results 11 to 20 of 106