New Zealand’s greenhouse gas emissions 1990–2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

166
8
Added
15 Apr 2019

This dataset was first added to MfE Data Service on 15 Apr 2019.

We measure gases that are added to the atmosphere through human activities. This does not include natural sources such as biological processes or volcanic emissions.

We report greenhouse gas (GHG) emissions in carbon dioxide equivalent (CO2-e) units, which is a measure for how much global warming a given type and amount of greenhouse gas causes, using the equivalent amount of carbon dioxide as the reference. CO2-e is used for describing different greenhouse gases in a common unit, which allows them to be reported consistently.

Data may not include the latest emissions data, which can be found on the Ministry for the Environment’s website.

More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 99865
Data type Table
Row count 18
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

New Zealand’s greenhouse gas emissions by sector and gas 2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

977
6
Added
16 Apr 2019

This dataset was first added to MfE Data Service on 16 Apr 2019.

We measure gases that are added to the atmosphere through human activities. This does not include natural sources such as biological processes or volcanic emissions.

We report greenhouse gas (GHG) emissions in carbon dioxide equivalent (CO2-e) units, which is a measure for how much global warming a given type and amount of greenhouse gas causes, using the equivalent amount of carbon dioxide as the reference. CO2-e is used for describing different greenhouse gases in a common unit, which allows them to be reported consistently.

Data may not include the latest emissions data, which can be found on the Ministry for the Environment’s website.

More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 99874
Data type Table
Row count 30
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Water physical stocks by region (1995–2014)

Licence

Creative Commons Attribution 3.0 New Zealand

You may use this work for commercial purposes.

You must attribute the creator in your own works.

2290
34
Added
01 Oct 2015

This dataset was first added to MfE Data Service on 01 Oct 2015.

New Zealand is a water-rich country. Water is found in a network of waterways and lakes, as ground water, in glaciers, and in the soil and plants. Changes in temperature and precipitation patterns affect our water stocks, for example leading to low flows or floods. Water physical stocks show how climate changes can impact on our environment, its ecosystems, and ultimately our lifestyles.
Further information can be found in:
Collins, D, Zammit, C, Willsman, A & Henderson, R (2015) Surface water components of New Zealand’s National WaterAccounts, 1995-2014. Prepared for Ministry for the Environment May 2015. Available at data.mfe.govt.nz/x/Tebsax on the Ministry for the Environment dataservice (data.mfe.govt.nz/).
This dataset relates to the "Water physical stocks: precipitation and evapotranspiration" measure on the Environmental Indicators, Te taiao Aotearoa website.

Table ID 52578
Data type Table
Row count 3520
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Water physical stocks for selected measures (1995–2014)

Licence

Creative Commons Attribution 3.0 New Zealand

You may use this work for commercial purposes.

You must attribute the creator in your own works.

862
21
Added
15 Oct 2015

This dataset was first added to MfE Data Service on 15 Oct 2015.

New Zealand is a water-rich country. Water is found in a network of waterways and lakes, as ground water, in glaciers, and in the soil and plants. Changes in temperature and precipitation patterns affect our water stocks, for example leading to low flows or floods. Water physical stocks show how climate changes can impact on our environment, its ecosystems, and ultimately our lifestyles.
Further information can be found in:
Collins, D, Zammit, C, Willsman, A & Henderson, R (2015) Surface water components of New Zealand’s National WaterAccounts, 1995-2014. Prepared for Ministry for the Environment May 2015. Available at data.mfe.govt.nz/x/Tebsax on the Ministry for the Environment dataservice (data.mfe.govt.nz/).
This dataset relates to the "Water physical stocks: precipitation and evapotranspiration" measure on the Environmental Indicators, Te taiao Aotearoa website.
Variables: Abstraction for Hydrogeneration, Change in Ice, Change in Lakes, Change in Snow, Change in Soil Moisture, Discharge by Hydrogeneration, Evapotranspiration, Inflow from other regions, Outflow to other regions, Outflow to sea, Precipitation, Total.

Table ID 52596
Data type Table
Row count 240
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Extreme wind, 1972–2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

2224
40
Added
12 Oct 2017

This dataset was first added to MfE Data Service on 12 Oct 2017.

Extreme wind annual statistics for 30 regionally representative sites. The number of days with a maximum gust in the 99th percentile provides information on the frequency of extreme wind events. Percentiles are obtained from all available daily maximum wind gust data. On average, the 99th percentile daily maximum wind gust will be exceeded on approximately 3.6 days per year. Therefore, annual counts higher than this indicate more days than usual with very strong wind gusts recorded; annual counts lower than 3.6 indicate fewer strong wind gust days than usual. By using a percentile threshold we can identify events that are extreme for a particular location. Some places are naturally subject to stronger winds than others, so vegetation can become ‘wind-hardened’ and may have a higher tolerance to high wind gusts (eg a 100 km/hr wind gust may be damaging at one location, but not at another). Using a relative threshold accounts for these differences and better captures extreme wind gust occurrences. The highest maximum gust per year and the average annual highest maximum wind gust both provide information on the magnitude of extreme wind events.
Steady wind can be an important resource, but strong gusts can damage property, topple trees, and disrupt transportation, communications, and electricity. Extreme wind events can occur with frontal weather systems, around strong convective storms such as thunderstorms, and with ex-tropical cyclones. Projections indicate climate change may alter the occurrence of extreme wind events, with the strength of extreme winds expected to increase over the southern half of the North Island and the South Island, especially east of the Southern Alps, and decrease from Northland to Bay of Plenty. Monitoring can help us gauge the potential of, and prepare for, such events.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89425
Data type Table
Row count 1327
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Trends in peak UV index value, 1981–2017

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

2071
5
Added
14 Oct 2017

This dataset was first added to MfE Data Service on 14 Oct 2017.

Trends in daily peak UV index values at Invercargill, Lauder (Otago region), Christchurch, Paraparaumu (Wellington region), and Leigh (Auckland region). The strength of UV light is expressed as a solar UV index, starting from 0 (no UV) to 11+ (extreme).
Exposure to the sun's ultraviolet (UV) light helps our bodies make vitamin D, which we need for healthy bones and muscles. However, too much exposure to UV light can cause skin cancer. New Zealand has naturally high UV levels, and monitoring UV levels helps us understand the occurrence of skin cancer.
Ozone in the upper atmosphere absorbs some of the sun’s UV light, protecting us from harmful levels. The amount of UV radiation reaching the ground varies in relation to changes in the atmospheric ozone concentrations. The Antarctic ozone hole lies well to the south of New Zealand and does not have a large effect on New Zealand’s ozone concentrations.
The trend was assessed using the Theil-Sen estimator and the Two One-Sided Test (TOST) for equivalence at the 95% confidence level.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89469
Data type Table
Row count 5
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Monthly average peak UV index value, 1981–2017

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

1836
19
Added
14 Oct 2017

This dataset was first added to MfE Data Service on 14 Oct 2017.

Monthly average peak UV index values at Invercargill, Lauder (Otago region), Christchurch, Paraparaumu (Wellington region), and Leigh (Auckland region). The strength of UV light is expressed as a solar UV index, starting from 0 (no UV) to 11+ (extreme).
Exposure to the sun's ultraviolet (UV) light helps our bodies make vitamin D, which we need for healthy bones and muscles. However, too much exposure to UV light can cause skin cancer. New Zealand has naturally high UV levels, and monitoring UV levels helps us understand the occurrence of skin cancer.
Ozone in the upper atmosphere absorbs some of the sun’s UV light, protecting us from harmful levels. The amount of UV radiation reaching the ground varies in relation to changes in the atmospheric ozone concentrations. The Antarctic ozone hole lies well to the south of New Zealand and does not have a large effect on New Zealand’s ozone concentrations.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89467
Data type Table
Row count 65
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Trends in total sunshine hours, 1972–2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

2069
11
Added
13 Oct 2017

This dataset was first added to MfE Data Service on 13 Oct 2017.

Trends in total sunshine hours, 1972–2016.
Sunshine is essential for our mental and physical well–being and plant growth. It is also important for tourism and recreation.
Trend direction was assessed using the Theil-Sen estimator and the Two One-Sided Test (TOST) for equivalence at the 95% confidence level.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89444
Data type Table
Row count 30
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Total Sunshine Hours, 1972–2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

2367
37
Added
13 Oct 2017

This dataset was first added to MfE Data Service on 13 Oct 2017.

Interpolated total sunshine hours values at 30 regionally representative sites.
Sunshine is essential for our mental and physical well-being and plant growth. It is also important for tourism and recreation.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89445
Data type Table
Row count 1350
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Daily peak UV index value, 1981–2017

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

2319
18
Added
14 Oct 2017

This dataset was first added to MfE Data Service on 14 Oct 2017.

Daily peak UV index values at Invercargill, Lauder (Otago region), Christchurch, Paraparaumu (Wellington region), and Leigh (Auckland region). The strength of UV light is expressed as a solar UV index, starting from 0 (no UV) to 11+ (extreme).
Exposure to the sun's ultraviolet (UV) light helps our bodies make vitamin D, which we need for healthy bones and muscles. However, too much exposure to UV light can cause skin cancer. New Zealand has naturally high UV levels, and monitoring UV levels helps us understand the occurrence of skin cancer.
Ozone in the upper atmosphere absorbs some of the sun’s UV light, protecting us from harmful levels. The amount of UV radiation reaching the ground varies in relation to changes in the atmospheric ozone concentrations. The Antarctic ozone hole lies well to the south of New Zealand and does not have a large effect on New Zealand’s ozone concentrations.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89468
Data type Table
Row count 38993
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed
Results 1 to 10 of 106