Spring rainfall trends, 1960–2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

6817
13
Added
12 Oct 2017

This dataset was first added to MfE Data Service on 12 Oct 2017.

Spring rainfall trends for 30 representative sites from 1960–2016.
Rain is vital for life – it supplies the water we need to drink and to grow our food, keeps our ecosystems healthy, and supplies our electricity. New Zealand’s mountainous terrain and location in the roaring forties mean rainfall varies across the country. Changes in rainfall amount or timing can significantly affect agriculture, energy, recreation, and the environment. For example, an increase or decrease of rainfall in spring can have marked effects on crops or fish populations.
Trend direction was assessed using the Theil-Sen estimator and the Two One-Sided Test (TOST) for equivalence at the 95% confidence level.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89403
Data type Table
Row count 30
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Autumn rainfall trends, 1960–2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

8349
20
Added
12 Oct 2017

This dataset was first added to MfE Data Service on 12 Oct 2017.

Autumn rainfall trends for 30 representative sites from 1960–2016.
Rain is vital for life – it supplies the water we need to drink and to grow our food, keeps our ecosystems healthy, and supplies our electricity. New Zealand’s mountainous terrain and location in the roaring forties mean rainfall varies across the country. Changes in rainfall amount or timing can significantly affect agriculture, energy, recreation, and the environment. For example, an increase or decrease of rainfall in spring can have marked effects on crops or fish populations.
Trend direction was assessed using the Theil-Sen estimator and the Two One-Sided Test (TOST) for equivalence at the 95% confidence level.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89402
Data type Table
Row count 30
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Rainfall, 1960–2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

10372
358
Added
12 Oct 2017

This dataset was first added to MfE Data Service on 12 Oct 2017.

Daily rainfall values for 30 representative sites from 1960–2016.
Rain is vital for life – it supplies the water we need to drink and to grow our food, keeps our ecosystems healthy, and supplies our electricity. New Zealand’s mountainous terrain and location in the roaring forties mean rainfall varies across the country. Changes in rainfall amount or timing can significantly affect agriculture, energy, recreation, and the environment. For example, an increase or decrease of rainfall in spring can have marked effects on crops or fish populations.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89401
Data type Table
Row count 617808
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Annual rainfall trends, 1960–2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

8417
74
Added
12 Oct 2017

This dataset was first added to MfE Data Service on 12 Oct 2017.

Annual rainfall trends for 30 representative sites from 1960–2016.
Rain is vital for life – it supplies the water we need to drink and to grow our food, keeps our ecosystems healthy, and supplies our electricity. New Zealand’s mountainous terrain and location in the roaring forties mean rainfall varies across the country. Changes in rainfall amount or timing can significantly affect agriculture, energy, recreation, and the environment. For example, an increase or decrease of rainfall in spring can have marked effects on crops or fish populations.
Trend direction was assessed using the Theil-Sen estimator and the Two One-Sided Test (TOST) for equivalence at the 95% confidence level.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89400
Data type Table
Row count 30
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Forest carbon stocks, 1990–2015

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

7342
36
Added
17 Oct 2017

This dataset was first added to MfE Data Service on 17 Oct 2017.

Forest carbon stocks and areas, including stock changes, areas, and deforestation.
New Zealand’s indigenous and exotic forests absorb carbon dioxide (CO2) from the atmosphere through photosynthesis and store the carbon as biomass and in the soil. On average, more than twice as much carbon per hectare is stored in New Zealand’s mature indigenous forests than in exotic forests planted for wood production. Regenerating indigenous forests are also an important store of carbon, adding carbon every year as they grow. Total carbon stored in exotic forests will fluctuate over decades as the forests grow from seedlings to mature trees, are harvested, and replanted. Because CO2 is the major driver of climate change, forests provide important mitigation services and help New Zealand meet its climate change commitments.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89475
Data type Table
Row count 1066
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Forest carbon stocks trends, 1990–2015

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

8062
17
Added
12 Oct 2017

This dataset was first added to MfE Data Service on 12 Oct 2017.

New Zealand’s indigenous and exotic forests absorb carbon dioxide (CO2) from the atmosphere through photosynthesis and store the carbon as biomass and in the soil. On average, more than twice as much carbon per hectare is stored in New Zealand’s mature indigenous forests than in exotic forests planted for wood production. Regenerating indigenous forests are also an important store of carbon, adding carbon every year as they grow. Total carbon stored in exotic forests will fluctuate over decades as the forests grow from seedlings to mature trees, are harvested, and replanted. Because CO2 is the major driver of climate change, forests provide important mitigation services and help New Zealand meet its climate change commitments.
The trend was assessed using the Theil-Sen estimator and the Two One-Sided Test (TOST) for equivalence at the 95% confidence level.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89410
Data type Table
Row count 2
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Deforestation trend, 1990–2015

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

7531
31
Added
12 Oct 2017

This dataset was first added to MfE Data Service on 12 Oct 2017.

New Zealand’s indigenous and exotic forests absorb carbon dioxide (CO2) from the atmosphere through photosynthesis and store the carbon as biomass and in the soil. On average, more than twice as much carbon per hectare is stored in New Zealand’s mature indigenous forests than in exotic forests planted for wood production. Regenerating indigenous forests are also an important store of carbon, adding carbon every year as they grow. Total carbon stored in exotic forests will fluctuate over decades as the forests grow from seedlings to mature trees, are harvested, and replanted. Because CO2 is the major driver of climate change, forests provide important mitigation services and help New Zealand meet its climate change commitments.
Trend direction was assessed using the Theil-Sen estimator and the Two One-Sided Test (TOST) for equivalence at the 95% confidence level.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89408
Data type Table
Row count 3
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Monthly El Niño Southern Oscillation Index, 1986–2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

9309
100
Added
12 Oct 2017

This dataset was first added to MfE Data Service on 12 Oct 2017.

The El Niño Southern Oscillation (ENSO) is the movement of warm equatorial water across the Pacific Ocean and the atmospheric response. It occurs every 2–7 years, typically lasting 6–18 months. ENSO has three phases: neutral, El Niño and La Niña. In New Zealand an El Niño phase in summer can bring increased westerly winds, more rain in the west, and drought in the east; in winter it can lead to more cool southerly winds. During a La Niña phase we may experience more north-easterly winds, wetter conditions in the north and east, and higher sea levels.
This dataset relates to monthly ENSO values.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89381
Data type Table
Row count 372
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

The annual SOI compared with New Zealand's detrended temperature series, 1908/9–2015/6

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

7183
10
Added
12 Oct 2017

This dataset was first added to MfE Data Service on 12 Oct 2017.

The El Niño Southern Oscillation (ENSO) is the movement of warm equatorial water across the Pacific Ocean and the atmospheric response. It occurs every 2–7 years, typically lasting 6–18 months. ENSO has three phases: neutral, El Niño and La Niña. In New Zealand an El Niño phase in summer can bring increased westerly winds, more rain in the west, and drought in the east; in winter it can lead to more cool southerly winds. During a La Niña phase we may experience more north-easterly winds, wetter conditions in the north and east, and higher sea levels.
This dataset relates to annual ENSO and detrended temperature data.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89380
Data type Table
Row count 216
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Trends in maximum highest annual wind gust, 1972–2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

6918
25
Added
12 Oct 2017

This dataset was first added to MfE Data Service on 12 Oct 2017.

Trends in maximum highest annual wind gust, 1972–2016. The number of days with a maximum gust in the 99th percentile provides information on the frequency of extreme wind events. Percentiles are obtained from all available daily maximum wind gust data. On average, the 99th percentile daily maximum wind gust will be exceeded on approximately 3.6 days per year. Therefore, annual counts higher than this indicate more days than usual with very strong wind gusts recorded; annual counts lower than 3.6 indicate fewer strong wind gust days than usual. By using a percentile threshold we can identify events that are extreme for a particular location. Some places are naturally subject to stronger winds than others, so vegetation can become ‘wind-hardened’ and may have a higher tolerance to high wind gusts (eg a 100 km/hr wind gust may be damaging at one location, but not at another). Using a relative threshold accounts for these differences and better captures extreme wind gust occurrences. The highest maximum gust per year and the average annual highest maximum wind gust both provide information on the magnitude of extreme wind events.
Steady wind can be an important resource, but strong gusts can damage property, topple trees, and disrupt transportation, communications, and electricity. Extreme wind events can occur with frontal weather systems, around strong convective storms such as thunderstorms, and with ex–tropical cyclones. Projections indicate climate change may alter the occurrence of extreme wind events, with the strength of extreme winds expected to increase over the southern half of the North Island and the South Island, especially east of the Southern Alps, and decrease from Northland to Bay of Plenty. Monitoring can help us gauge the potential of, and prepare for, such events.
Trend direction was assessed using the Theil-Sen estimator and the Two One-Sided Test (TOST) for equivalence at the 95% confidence level.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89424
Data type Table
Row count 30
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed
Results 41 to 50 of 119