The annual SOI compared with New Zealand's detrended temperature series, 1908/9–2015/6

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

5399
10
Added
12 Oct 2017

This dataset was first added to MfE Data Service on 12 Oct 2017.

The El Niño Southern Oscillation (ENSO) is the movement of warm equatorial water across the Pacific Ocean and the atmospheric response. It occurs every 2–7 years, typically lasting 6–18 months. ENSO has three phases: neutral, El Niño and La Niña. In New Zealand an El Niño phase in summer can bring increased westerly winds, more rain in the west, and drought in the east; in winter it can lead to more cool southerly winds. During a La Niña phase we may experience more north-easterly winds, wetter conditions in the north and east, and higher sea levels.
This dataset relates to annual ENSO and detrended temperature data.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89380
Data type Table
Row count 216
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Monthly El Niño Southern Oscillation Index, 1986–2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

6753
84
Added
12 Oct 2017

This dataset was first added to MfE Data Service on 12 Oct 2017.

The El Niño Southern Oscillation (ENSO) is the movement of warm equatorial water across the Pacific Ocean and the atmospheric response. It occurs every 2–7 years, typically lasting 6–18 months. ENSO has three phases: neutral, El Niño and La Niña. In New Zealand an El Niño phase in summer can bring increased westerly winds, more rain in the west, and drought in the east; in winter it can lead to more cool southerly winds. During a La Niña phase we may experience more north-easterly winds, wetter conditions in the north and east, and higher sea levels.
This dataset relates to monthly ENSO values.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89381
Data type Table
Row count 372
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Interdecadal Pacific Oscillation, 1871–2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

7237
71
Added
12 Oct 2017

This dataset was first added to MfE Data Service on 12 Oct 2017.

The Interdecadal Pacific Oscillation (IPO) is a long-term oscillation of sea-surface temperatures in the Pacific Ocean that can last from 20 to 30 years. Its positive and negative phases affect the strength and frequency of El Niño and La Niña. In New Zealand, the positive phase is linked to stronger west to southwest winds and more rain in the west. This trend is reversed during the negative phase.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89382
Data type Table
Row count 730
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Southern Annular Mode annual values, 1887–2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

6096
33
Added
12 Oct 2017

This dataset was first added to MfE Data Service on 12 Oct 2017.

A consistent band of westerly wind flows across the Southern Hemisphere and circles the South Pole. The Southern Annular Mode (SAM) describes how this band moves, either north towards the equator (negative phase) or south towards Antarctica (positive phase). A negative phase typically causes increased westerlies, unsettled weather, and storms in New Zealand. A phase can last several weeks, but changes can be rapid and unpredictable.
The SAM is one of three climate oscillations that affect our weather. The resulting changes in air pressure, sea temperature, and wind direction can last for weeks to decades, depending on the oscillation.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89383
Data type Table
Row count 168
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Southern Annular Mode monthly values, January 1979–December 2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

6260
25
Added
12 Oct 2017

This dataset was first added to MfE Data Service on 12 Oct 2017.

A consistent band of westerly wind flows across the Southern Hemisphere and circles the South Pole. The Southern Annular Mode (SAM) describes how this band moves, either north towards the equator (negative phase) or south towards Antarctica (positive phase). A negative phase typically causes increased westerlies, unsettled weather, and storms in New Zealand. A phase can last several weeks, but changes can be rapid and unpredictable.
The SAM is one of three climate oscillations that affect our weather. The resulting changes in air pressure, sea temperature, and wind direction can last for weeks to decades, depending on the oscillation.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89384
Data type Table
Row count 456
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Southern Annular Mode trend assessment, 1860–2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

6569
13
Added
12 Oct 2017

This dataset was first added to MfE Data Service on 12 Oct 2017.

A consistent band of westerly wind flows across the Southern Hemisphere and circles the South Pole. The Southern Annular Mode (SAM) describes how this band moves, either north towards the equator (negative phase) or south towards Antarctica (positive phase). A negative phase typically causes increased westerlies, unsettled weather, and storms in New Zealand. A phase can last several weeks, but changes can be rapid and unpredictable.
The SAM is one of three climate oscillations that affect our weather. The resulting changes in air pressure, sea temperature, and wind direction can last for weeks to decades, depending on the oscillation.
Trend direction was assessed using the Theil-Sen estimator and the Two One-Sided Test (TOST) for equivalence at the 95% confidence level.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89385
Data type Table
Row count 7
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Campylobacteriosis, cryptosporidiosis, and salmonellosis notifications, 1997–2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

5106
3
Added
12 Oct 2017

This dataset was first added to MfE Data Service on 12 Oct 2017.

Bacteria and parasites are influenced by climate variables, and infection rates may increase in response to climate change and rising temperatures. Campylobacter, Cryptosporidium, and Salmonella are three such organisms that can contaminate our food and water, leading to serious illness. Monitoring the incidence rates of illnesses can help us assess the health risks related to climate change and better prepare for disease outbreaks.
The numbers of notified cases of infection are sourced from EpiSurv, New Zealand’s national notifiable disease surveillance system. Various factors influence disease notification, and therefore the calculation of notifiable disease rates. For example, people are less likely to consult a medical practitioner when an illness is not severe (ESR, 2016a). The number of notified cases vary greatly from year to year due to New Zealand’s small population and low number of cases for some diseases (Environmental Science and Research, 2016). The August 2016 Camplylobacter outbreak in Havelock provides an example of this variation (ESR, 2016b).
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89386
Data type Table
Row count 816
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Frost and warm days, 1972–2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

5355
32
Added
12 Oct 2017

This dataset was first added to MfE Data Service on 12 Oct 2017.

The number of frost and warm days changes from year to year in response to climate variation, such as the warming pattern induced by El Niño. Climate models project we may experience fewer cold and more warm extremes in the future. Changes in the number of frost and warm days can affect agriculture, recreation, and our behaviour, for example, what we do to keep safe on icy roads or whether to use air conditioning to keep cool.
A frost day is when the minimum temperature recorded is below 0 degrees Celsius. It refers to a temperature measured in an instrument screen 1.2 m above the ground rather than a ‘ground frost’. We define a warm day as having a maximum recorded temperature above 25 degrees Celsius. The threshold of 25 degrees Celsius is chosen to represent days where action might be taken to keep cool (eg turn air conditioning on).
This dataset gives the number of frost and warm days per month and calendar year for New Zealand, the North and South Islands, and all 30 sites.
For frost days we have used calendar years. For warm days we have used growing season (July 1 – June 30 of the following year).
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89387
Data type Table
Row count 32667
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Frost and warm days trend assessment, 1972–2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

5175
15
Added
12 Oct 2017

This dataset was first added to MfE Data Service on 12 Oct 2017.

The number of frost and warm days changes from year to year in response to climate variation, such as the warming pattern induced by El Niño. Climate models project we may experience fewer cold and more warm extremes in the future. Changes in the number of frost and warm days can affect agriculture, recreation, and our behaviour, for example, what we do to keep safe on icy roads or whether to use air conditioning to keep cool.
A frost day is when the minimum temperature recorded is below 0 degrees Celsius. It refers to a temperature measured in an instrument screen 1.2m above the ground rather than a ‘ground frost’. We define a warm day as having a maximum recorded temperature above 25 degrees Celsius. The threshold of 25 degrees Celsius is chosen to represent days where action might be taken to keep cool (eg turn air conditioning on).
This dataset gives the trend in frost and warm days for New Zealand, the North and South Islands, and for all 30 sites.
For frost days we have used calendar years. For warm days we have used growing season (July 1 – June 30 of the following year).
Trend direction was assessed using the Theil-Sen estimator and the Two One-Sided Test (TOST) for equivalence at the 95% confidence level.
More information on this dataset and how it relates to our Environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89388
Data type Table
Row count 60
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Growing degree days monthly data by site, 1972–2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

5990
38
Added
12 Oct 2017

This dataset was first added to MfE Data Service on 12 Oct 2017.

Growing degree days (GDD) measures the amount of warmth available for plant and insect growth and can be used to predict when flowers will bloom and crops and insects will mature. GDD counts the total number of degrees Celsius each day is above a threshold temperature. In this report we used 10 degrees Celsius. Increased GDD means that plants and insects reach maturity faster, provided that other conditions necessary for growth are favourable, such as sufficient moisture and nutrients. As a measure of temperature, GDD experiences short-term changes in response to climate variations, such as El Niño, and in the longer-term is affected by our warming climate.
This dataset gives the number of GDD per month and calendar year for all 30 sites.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89392
Data type Table
Row count 1290
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed
Results 41 to 50 of 119