Southern Annular Mode trend assessment, 1860–2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

4653
11
Added
12 Oct 2017

This dataset was first added to MfE Data Service on 12 Oct 2017.

A consistent band of westerly wind flows across the Southern Hemisphere and circles the South Pole. The Southern Annular Mode (SAM) describes how this band moves, either north towards the equator (negative phase) or south towards Antarctica (positive phase). A negative phase typically causes increased westerlies, unsettled weather, and storms in New Zealand. A phase can last several weeks, but changes can be rapid and unpredictable.
The SAM is one of three climate oscillations that affect our weather. The resulting changes in air pressure, sea temperature, and wind direction can last for weeks to decades, depending on the oscillation.
Trend direction was assessed using the Theil-Sen estimator and the Two One-Sided Test (TOST) for equivalence at the 95% confidence level.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89385
Data type Table
Row count 7
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Annual glacier ice volumes trend, 1977–2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

4545
18
Added
12 Oct 2017

This dataset was first added to MfE Data Service on 12 Oct 2017.

A glacier is a body of slow-moving ice, at least 1 hectare in area that has persisted for two decades or longer. New Zealand has 3,144 glaciers. Most are located along the Southern Alps on the South Island, although Mount Ruapehu on the North Island supports 18 glaciers. New Zealand’s large glaciers are noteworthy for their large debris cover. The exceptions, Franz Joseph and Fox glaciers, are rare examples of glaciers that terminate in a rainforest.
Glacier volume is strongly influenced by climate factors, such as temperature and precipitation, which scientists expect to be affected by the warming climate. Glacial ice is an important water resource. Changes to ice storage and melting can affect ecological and hydropower resources downstream, as well as important cultural values and tourism.
Trend direction was assessed using the Theil-Sen estimator and the Two One-Sided Test (TOST) for equivalence at the 95% confidence level.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89397
Data type Table
Row count 1
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Autumn rainfall trends, 1960–2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

4531
12
Added
12 Oct 2017

This dataset was first added to MfE Data Service on 12 Oct 2017.

Autumn rainfall trends for 30 representative sites from 1960–2016.
Rain is vital for life – it supplies the water we need to drink and to grow our food, keeps our ecosystems healthy, and supplies our electricity. New Zealand’s mountainous terrain and location in the roaring forties mean rainfall varies across the country. Changes in rainfall amount or timing can significantly affect agriculture, energy, recreation, and the environment. For example, an increase or decrease of rainfall in spring can have marked effects on crops or fish populations.
Trend direction was assessed using the Theil-Sen estimator and the Two One-Sided Test (TOST) for equivalence at the 95% confidence level.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89402
Data type Table
Row count 30
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Ozone hole (1979–2014)

Licence

Creative Commons Attribution 3.0 New Zealand

You may use this work for commercial purposes.

You must attribute the creator in your own works.

4462
26
Added
01 Oct 2015

This dataset was first added to MfE Data Service on 01 Oct 2015.

Ozone protects the Earth from harmful levels of UV radiation. The ozone hole is an area of reduced stratospheric ozone that forms over Antarctica each spring, due to ozone-depleting substance. Reporting on the state of the ozone hole provides important context for the state of ozone concentrations globally.
This dataset relates to the "Ozone hole" measure on the Environmental Indicators, Te taiao Aotearoa website.

Table ID 52563
Data type Table
Row count 35
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Extreme wind, 1972–2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

4296
54
Added
12 Oct 2017

This dataset was first added to MfE Data Service on 12 Oct 2017.

Extreme wind annual statistics for 30 regionally representative sites. The number of days with a maximum gust in the 99th percentile provides information on the frequency of extreme wind events. Percentiles are obtained from all available daily maximum wind gust data. On average, the 99th percentile daily maximum wind gust will be exceeded on approximately 3.6 days per year. Therefore, annual counts higher than this indicate more days than usual with very strong wind gusts recorded; annual counts lower than 3.6 indicate fewer strong wind gust days than usual. By using a percentile threshold we can identify events that are extreme for a particular location. Some places are naturally subject to stronger winds than others, so vegetation can become ‘wind-hardened’ and may have a higher tolerance to high wind gusts (eg a 100 km/hr wind gust may be damaging at one location, but not at another). Using a relative threshold accounts for these differences and better captures extreme wind gust occurrences. The highest maximum gust per year and the average annual highest maximum wind gust both provide information on the magnitude of extreme wind events.
Steady wind can be an important resource, but strong gusts can damage property, topple trees, and disrupt transportation, communications, and electricity. Extreme wind events can occur with frontal weather systems, around strong convective storms such as thunderstorms, and with ex-tropical cyclones. Projections indicate climate change may alter the occurrence of extreme wind events, with the strength of extreme winds expected to increase over the southern half of the North Island and the South Island, especially east of the Southern Alps, and decrease from Northland to Bay of Plenty. Monitoring can help us gauge the potential of, and prepare for, such events.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89425
Data type Table
Row count 1327
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Southern Annular Mode monthly values, January 1979–December 2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

4473
20
Added
12 Oct 2017

This dataset was first added to MfE Data Service on 12 Oct 2017.

A consistent band of westerly wind flows across the Southern Hemisphere and circles the South Pole. The Southern Annular Mode (SAM) describes how this band moves, either north towards the equator (negative phase) or south towards Antarctica (positive phase). A negative phase typically causes increased westerlies, unsettled weather, and storms in New Zealand. A phase can last several weeks, but changes can be rapid and unpredictable.
The SAM is one of three climate oscillations that affect our weather. The resulting changes in air pressure, sea temperature, and wind direction can last for weeks to decades, depending on the oscillation.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89384
Data type Table
Row count 456
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Trends in peak UV index value, 1981–2017

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

4526
5
Added
14 Oct 2017

This dataset was first added to MfE Data Service on 14 Oct 2017.

Trends in daily peak UV index values at Invercargill, Lauder (Otago region), Christchurch, Paraparaumu (Wellington region), and Leigh (Auckland region). The strength of UV light is expressed as a solar UV index, starting from 0 (no UV) to 11+ (extreme).
Exposure to the sun's ultraviolet (UV) light helps our bodies make vitamin D, which we need for healthy bones and muscles. However, too much exposure to UV light can cause skin cancer. New Zealand has naturally high UV levels, and monitoring UV levels helps us understand the occurrence of skin cancer.
Ozone in the upper atmosphere absorbs some of the sun’s UV light, protecting us from harmful levels. The amount of UV radiation reaching the ground varies in relation to changes in the atmospheric ozone concentrations. The Antarctic ozone hole lies well to the south of New Zealand and does not have a large effect on New Zealand’s ozone concentrations.
The trend was assessed using the Theil-Sen estimator and the Two One-Sided Test (TOST) for equivalence at the 95% confidence level.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89469
Data type Table
Row count 5
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Growing degree days trend assessment, by site, 1972/3–2015/6

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

4294
22
Added
18 Oct 2017

This dataset was first added to MfE Data Service on 18 Oct 2017.

Growing degree days (GDD) measures the amount of warmth available for plant and insect growth and can be used to predict when flowers will bloom and crops and insects will mature. GDD counts the total number of degrees Celsius each day is above a threshold temperature. In this report we used 10 degrees Celsius. Increased GDD means that plants and insects reach maturity faster, provided that other conditions necessary for growth are favourable, such as sufficient moisture and nutrients. As a measure of temperature, GDD experiences short-term changes in response to climate variations, such as El Niño, and in the longer-term is affected by our warming climate.
Growing degree days (GDD) counts the number of days that are warmer than a threshold temperature (Tbase) in a year. GDD is calculated by subtracting the Tbase from the average daily temperature (maximum plus minimum temperature divided by two). If the average daily temperature is less than Tbase the GDD for that day is assigned a value of zero.
This dataset gives the trend in GDD over growing seasons (July 1 – June 30 of the following year) for 30 sites.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89481
Data type Table
Row count 30
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Oceanic sea surface temperature, 1993–2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

4292
36
Added
12 Oct 2017

This dataset was first added to MfE Data Service on 12 Oct 2017.

We used NIWA’s sea-surface temperature archive, which is derived from the Advanced Very High Resolution Radiometer (AVHRR) satellite data it receives from the US National Oceanic and Atmospheric Administration. The archive provides high spatial (approximately 1km) and high temporal (approximately six-hourly in cloud-free locations) resolution estimates of sea-surface temperatures over the New Zealand region, dating from January 1993. Uddstrom & Oien (1999) and Uddstrom (2003) describe the methods used to derive and validate the data.
Our data extends from about 30°S to 55°S, and from 160°E to 170°W and is grouped into five areas: the exclusive economic zone (EEZ), the Chatham Rise, northern subtropical waters, subantarctic waters, and the Tasman Sea.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89406
Data type Table
Row count 960
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Growing degree days monthly data by site, 1972–2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

4323
33
Added
12 Oct 2017

This dataset was first added to MfE Data Service on 12 Oct 2017.

Growing degree days (GDD) measures the amount of warmth available for plant and insect growth and can be used to predict when flowers will bloom and crops and insects will mature. GDD counts the total number of degrees Celsius each day is above a threshold temperature. In this report we used 10 degrees Celsius. Increased GDD means that plants and insects reach maturity faster, provided that other conditions necessary for growth are favourable, such as sufficient moisture and nutrients. As a measure of temperature, GDD experiences short-term changes in response to climate variations, such as El Niño, and in the longer-term is affected by our warming climate.
This dataset gives the number of GDD per month and calendar year for all 30 sites.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89392
Data type Table
Row count 1290
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed
Results 21 to 30 of 106