Growing degree days annual growing season averages and totals, 1972/3–2015/6

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

4484
26
Added
12 Oct 2017

This dataset was first added to MfE Data Service on 12 Oct 2017.

Growing degree days (GDD) measures the amount of warmth available for plant and insect growth and can be used to predict when flowers will bloom and crops and insects will mature. GDD counts the total number of degrees Celsius each day is above a threshold temperature. In this report we used 10 degrees Celsius. Increased GDD means that plants and insects reach maturity faster, provided that other conditions necessary for growth are favourable, such as sufficient moisture and nutrients. As a measure of temperature, GDD experiences short-term changes in response to climate variations, such as El Niño, and in the longer-term is affected by our warming climate.
This dataset gives the average number of GDD over growing seasons (July 1 – June 30 of the following year) for New Zealand, the North and South Islands, and for all 30 sites.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89393
Data type Table
Row count 1389
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

New Zealand greenhouse gas emissions sub-sector summary data, 1990 and 2015

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

4413
47
Added
13 Oct 2017

This dataset was first added to MfE Data Service on 13 Oct 2017.

New Zealand greenhouse gas emissions data for 1990 and 2015. Data are sourced from the 1990–2015 New Zealand Greenhouse Gas Emissions Inventory. Emissions are provided by sector (Energy, Indistrail processes and product use, Agriculture, Land–use, land–use change and Forestry; and Waste) and sector subcategory. IPCC 2004 global warming potential values were used during conversion to CO2 equivalents. Greenhouse gases (GHGs) absorb heat from Earth’s surface, warming the atmosphere and changing our climate. New Zealand’s share of GHG emissions is very small, but our gross emissions per person are high. Emissions mainly come from combustion of fossil fuels that emit carbon dioxide (CO2), and agriculture which emits methane (CH4) and nitrous oxide (N2O). Carbon dioxide remains in the atmosphere much longer than other major GHGs. Because of this, today’s global CO2 emissions will continue to influence atmospheric CO2 concentrations for a very long time. Methane and N2O trap heat better than CO2 but leave the atmosphere faster. Reducing emissions of CH4 and N2O will decrease concentrations in the atmosphere more quickly.Greenhouse gases (GHGs) absorb heat from Earth’s surface, warming the atmosphere and changing our climate. New Zealand’s share of GHG emissions is very small, but our gross emissions per person are high. Emissions mainly come from combustion of fossil fuels that emit carbon dioxide (CO2), and agriculture which emits methane (CH4) and nitrous oxide (N2O). Carbon dioxide remains in the atmosphere much longer than other major GHGs. Because of this, today’s global CO2 emissions will continue to influence atmospheric CO2 concentrations for a very long time. Methane and N2O trap heat better than CO2 but leave the atmosphere faster.
More information on this dataset and how it relates to our Environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89431
Data type Table
Row count 96
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Potential evapotranspiration deficit (PED), 1972–2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

4634
32
Added
13 Oct 2017

This dataset was first added to MfE Data Service on 13 Oct 2017.

Interpolated PED values at 30 regionally representative sites.
Soil moisture is vital for plant growth. When plants cannot access the water they need, growth is reduced, affecting crops and food for livestock, and native biodiversity. Over a sustained period, a drought can have significant social and economic costs, particularly for rural communities.
Potential evapotranspiration deficit (PED) can be thought of as a drought index. It is the difference between how much water could potentially be lost from the soil through evapotranspiration and how much is actually available. When PED is high, plants do not have the full amount of water available they need for growth. PED is measured in growing seasons (the 12 months from 1 July to 30 June of the following year. Data covers each of the growing seasons from 1 July 1972, with the last growing season in the series ending on 30 June 2016. More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89437
Data type Table
Row count 1320
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

New Zealand's national temperature, 1909–2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

4328
94
Added
14 Oct 2017

This dataset was first added to MfE Data Service on 14 Oct 2017.

This dataset relates to NIWA's 'seven-station' temperature series uses temperature measurements from seven 'climate stations'.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89453
Data type Table
Row count 424
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Annual rainfall trends, 1960–2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

4356
47
Added
12 Oct 2017

This dataset was first added to MfE Data Service on 12 Oct 2017.

Annual rainfall trends for 30 representative sites from 1960–2016.
Rain is vital for life – it supplies the water we need to drink and to grow our food, keeps our ecosystems healthy, and supplies our electricity. New Zealand’s mountainous terrain and location in the roaring forties mean rainfall varies across the country. Changes in rainfall amount or timing can significantly affect agriculture, energy, recreation, and the environment. For example, an increase or decrease of rainfall in spring can have marked effects on crops or fish populations.
Trend direction was assessed using the Theil-Sen estimator and the Two One-Sided Test (TOST) for equivalence at the 95% confidence level.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89400
Data type Table
Row count 30
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Southern Annular Mode annual values, 1887–2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

4331
27
Added
12 Oct 2017

This dataset was first added to MfE Data Service on 12 Oct 2017.

A consistent band of westerly wind flows across the Southern Hemisphere and circles the South Pole. The Southern Annular Mode (SAM) describes how this band moves, either north towards the equator (negative phase) or south towards Antarctica (positive phase). A negative phase typically causes increased westerlies, unsettled weather, and storms in New Zealand. A phase can last several weeks, but changes can be rapid and unpredictable.
The SAM is one of three climate oscillations that affect our weather. The resulting changes in air pressure, sea temperature, and wind direction can last for weeks to decades, depending on the oscillation.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89383
Data type Table
Row count 168
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

El Niño Southern Oscillation Index (1909–2013)

Licence

Creative Commons Attribution 3.0 New Zealand

You may use this work for commercial purposes.

You must attribute the creator in your own works.

4265
71
Added
01 Oct 2015

This dataset was first added to MfE Data Service on 01 Oct 2015.

El Niño Southern Oscillation (ENSO). It is an important predictor of how tropical oceans and climate might influence New Zealand’s climate. Being able to predict the timing and intensity of an El Niño or La Niña climate phase is important in predicting and preparing for extreme climatic conditions, such as strong winds, heavy rain, or drought. Such extreme conditions can impact on our environment, industries, and recreational activities. ENSO is commonly measured using the Southern Oscillation Index (SOI).
In New Zealand, an El Niño phase can cause colder winters. In summer it can result in more rain in the west and drought in the east. A La Niña phase can cause warmer temperatures, more rain in the north-east, and less rain in the south and south-west.
This dataset relates to the "El Niño Southern Oscillation" measure on the Environmental Indicators, Te taiao Aotearoa website.

Table ID 52589
Data type Table
Row count 1729
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Daily peak UV index values, Invercargill, Leigh, Lauder, Paraparaumu and Christchurch (1981–2014)

Licence

Creative Commons Attribution 3.0 New Zealand

You may use this work for commercial purposes.

You must attribute the creator in your own works.

4288
22
Added
01 Oct 2015

This dataset was first added to MfE Data Service on 01 Oct 2015.

Too much exposure to the sun's ultraviolet (UV) radiation can cause skin cancer. Ozone absorbs some UV radiation, and UV levels can vary in relation to changes in atmospheric ozone. Monitoring UV levels can help us understand current skin cancer risk.
The Lauder spectroradiometer (UVM dataset) data are used to assure the reliability of broad-band erythermal UV (RB dataset) from five sites. Measurements supplied are daily peak, noon-time mean, and total daily dose of erythemal (skin-reddening) UV.
Further information can be found in:
Liley, B, Querel, B, & McKenzie, R (2014). Measurements of Ozone and UV for New Zealand. Prepared for the Ministry for the Environment, Wellington. Available at data.mfe.govt.nz/x/LoPyPo on the Ministry for the Environment dataservice (data.mfe.govt.nz/).
This dataset relates to the "UV intensity" measure on the Environmental Indicators, Te taiao Aotearoa website.

Table ID 52584
Data type Table
Row count 60760
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Lightning strikes, 2001–2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

4071
129
Added
16 Oct 2017

This dataset was first added to MfE Data Service on 16 Oct 2017.

Lightning is the discharge of electricity from thunderstorms and can occur within a cloud, between clouds, or between a cloud and the ground. By international standards, lightning does not occur frequently around New Zealand. However, ground strikes can injure or kill people and livestock, damage property and infrastructure, and, although rarely in New Zealand, spark forest fires. Thunderstorms are often associated with other severe weather events, such as strong wind gusts and hail. Thunderstorms may increase in frequency and intensity with climate change.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89470
Data type Table
Row count 2903389
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

New Zealand greenhouse gas emissions summary data, 1990–2015

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

4163
44
Added
13 Oct 2017

This dataset was first added to MfE Data Service on 13 Oct 2017.

New Zealand greenhouse gas emissions source and sink summary data by sector and gas for 1990-2015. Data are sourced from the 1990-2015 New Zealand Greenhouse Gas Emissions Inventory. Greenhouse gases (GHGs) absorb heat from Earth’s surface, warming the atmosphere and changing our climate. New Zealand’s share of GHG emissions is very small, but our gross emissions per person are high. Emissions mainly come from combustion of fossil fuels that emit carbon dioxide (CO2), and agriculture which emits methane (CH4) and nitrous oxide (N2O). Carbon dioxide remains in the atmosphere much longer than other major GHGs. Because of this, today’s global CO2 emissions will continue to influence atmospheric CO2 concentrations for a very long time. Methane and N2O trap heat better than CO2 but leave the atmosphere faster.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89429
Data type Table
Row count 26
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed
Results 11 to 20 of 106