Ground-level ozone concentrations, Auckland, 2001–16

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

3485
18
Updated
20 Nov 2019

This dataset was last updated on MfE Data Service on 20 Nov 2019.

Ground-level (tropospheric) ozone (O3) exists at a natural background level but is also produced when nitrogen oxides (NOx) and volatile organic compounds from vehicle emissions, petrol fumes, industrial processes solvents, and other human-made sources react in the presence of sunlight. It is the primary component of photochemical smog.
Ozone also occurs naturally in the stratosphere, where it protects us from ultraviolet radiation – this ozone occasionally can mix downwards to ground level.
Because sunlight and warmth are required for the chemical reactions that form ground-level ozone, peak concentrations often occur in summer when daylight hours are longer and temperatures are higher. Since the precursors for ozone can travel downwind from their sources before they react with sunlight, ozone concentrations can be high many kilometres from the precursor emissions’ sources.
Exposure to high concentrations of ozone can cause respiratory health problems and is linked to cardiovascular health problems and mortality. It can also damage vegetation.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 98423
Data type Table
Row count 535064
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Air pollutant emissions

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

7946
95
Added
16 Oct 2018

This dataset was first added to MfE Data Service on 16 Oct 2018.

An emissions inventory provides information on the amount of key air pollutants that are released into the atmosphere for a given location over a given time period. This enables us to identify sources of pollutants. By understanding the amounts that different sources contribute, air quality can be better managed and modelled.
We evaluated emissions for five key pollutants for 2015, the most-recent year that data were readily available: particulate matter (PM) less than 10 micrometres in diameter (PM10), PM less than 2.5 micrometres in diameter (PM2.5), carbon monoxide (CO), nitrogen oxides (NOx), and sulphur dioxide (SO2), because they are the most important pollutants in New Zealand.
The grouped sources include: energy-related activities, construction dust, road dust, industrial process emissions (non-combustion), agriculture (emissions from animal housing), vegetation fires (burning agricultural residue and biomass burning), and incinerating of hazardous waste.
Only human-generated emissions were included in this emission inventory. No updated data for residential wood burning were available and was assumed to be the same as the 2013 national inventory.

Table ID 98424
Data type Table
Row count 26
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Natural sources of particulate matter, 2000–16

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

4973
15
Added
16 Oct 2018

This dataset was first added to MfE Data Service on 16 Oct 2018.

Particulate matter (PM) is made up of solid and liquid particles in the air. It is grouped according to its size – PM10 is less than 10 micrometres (µm) in diameter; PM2.5 is less than 2.5 µm in diameter. Health effects from exposure to PM include lung and cardiac disease, and premature death.
Natural sources of PM include sea salt, dust (airborne soil, also called crustal material), secondary sulphate, pollen, black carbon from wild fires, and volcanic ash. There is little evidence that sea salt particles themselves are harmful (World Health Organization (WHO), 2013) although whether sea salt that has interacted with urban air pollutants is harmful is not known. PM can also be produced by human activities, such as dust from construction or unsealed roads, but this is not considered natural because it comes from human activity.
Natural sources of PM are important because although they cannot be managed they still contribute to ambient concentrations, which are subject to the National Environmental Standards for Air Quality (NESAQ). Exceedances of the NESAQ occur when the 24-hour average PM10 concentration exceeds 50 micrograms per cubic metre (µg/m3). There is no NESAQ for PM2.5 exposure, so we report on exceedances of the WHO 24-hour average PM2.5 concentration guideline (25 µg/m3).
We report on data from nine sites from 2005–16 and report only on sea salt for natural PM because other sources of natural PM, such as dust and sulphate, can be generated by humans as well. We were not able to separate the natural from human-generated contributions. Analysis of particle size, composition, and sources in New Zealand shows that sea salt made the largest contribution to natural PM.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 98425
Data type Table
Row count 13484
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Nitrogen dioxide concentrations: New Zealand Transport Agency data, 2010–16

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

5023
31
Added
16 Oct 2018

This dataset was first added to MfE Data Service on 16 Oct 2018.

Nitrogen dioxide (NO2) is a gas that is harmful to human health, ecosystems, and plants (US EPA, 2008). It can be emitted directly into the air but is often formed as a secondary pollutant when nitric oxide (NO) emissions react with other chemicals. It also contributes to the formation of secondary particulate matter (PM) and ozone, which have their own health impacts. In New Zealand, motor vehicles are the main human-made source of nitrogen oxides (NOx), the collective term for NO2 and NO. Because nitrogen dioxide concentrations are closely associated with vehicle emissions, it can be used as a proxy for other motor-vehicle pollutants such as benzene, carbon dioxide, and carbon monoxide.
Human exposure to high nitrogen dioxide concentrations causes inflammation of the airways and respiratory problems, particularly asthma. Nitrogen dioxide causes leaf injury in plants exposed to high levels. It also contributes to forming secondary particulate matter and ozone, which have their own health impacts.
We report on observed nitrogen dioxide concentrations from the New Zealand Transport Agency’s (NZTA) monitoring network. NZTA has comprehensive coverage across New Zealand.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 98426
Data type Table
Row count 828
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Health impacts of PM10, 2006 & 2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

6307
16
Added
17 Oct 2018

This dataset was first added to MfE Data Service on 17 Oct 2018.

PM10 (particulate matter less than 10 micrometres in diameter) comprises solid and liquid particles in the air. PM10 can be inhaled and the largest particles in this size fraction are deposited in the upper airways, while the smaller ones can deposit deep in the lungs. Children, the elderly, and people with existing heart or lung problems have a higher risk of health effects from PM10 exposure. Health effects include decreased lung function or heart attack, and mortality.
We report on the modelled number of premature deaths for adults (30+ years), hospitalisations, and restricted activity days for people of all ages for years 2006 and 2016 only. The model only includes impacts that result from exposure to PM10 that comes from human activities.
We focus on PM10 from human activities because these sources can be managed, unlike PM from natural sources such as sea salt.
• Premature deaths are those, often preventable, occurring before a person reaches the age they could be expected to live to.
• Hospitalisations relate to those for respiratory and cardiac illnesses (not including cases leading to premature death).
• Restricted activity days occur when symptoms are sufficient to limit usual activities such as work or study. These days aren’t shared evenly across the population – people with asthma or other respiratory conditions would likely have more restricted activity days.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 98462
Data type Table
Row count 12
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Air pollutant emissions, 2012-2019

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

21
2
Added
13 Oct 2021

This dataset was first added to MfE Data Service on 13 Oct 2021.

The air pollutant emissions indicator reports on national human-generated (anthropogenic) emissions of particulate matter (PM10 – particles smaller than 10 micrometres and PM2.5 – the subset of PM10 particles that are smaller than 2.5 micrometres), nitrogen oxides (NOx), carbon monoxide (CO), and sulphur dioxide (SO2), between 2012 and 2019. The grouped sources include: energy (combustion), transport, construction (non-combustion), road dust, industrial (non-combustion), agriculture, biomass burning, and waste. Only human-generated emissions were included in this emission inventory.

When air pollution levels are high, they can affect human and ecosystem health. An emissions inventory provides information on the sources and quantities of key air pollutants that are released into the atmosphere. By understanding the amounts that different sources contribute, air quality can be better managed and modelled.

More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 106232
Data type Table
Row count 684
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Carbon monoxide annual trends, 2011-2020

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

22
1
Added
13 Oct 2021

This dataset was first added to MfE Data Service on 13 Oct 2021.

Carbon monoxide (CO) is a colourless, odourless and tasteless gas. The most common sources of carbon monoxide are from the incomplete combustion of fossil fuels such as fuel used by vehicles, and from wood and coal, commonly burnt in fires for home heating. Other common sources of carbon monoxide are tobacco smoke and indoor gas fires. It also occurs naturally, for example, from volcanoes and wildfires.

Carbon monoxide can affect human health by interfering with the blood’s ability to absorb and circulate oxygen and by aggravating heart conditions. It has a relatively long life in the atmosphere – about three months. This is due to the slow rate at which carbon monoxide oxidises, forming carbon dioxide (a greenhouse gas). Carbon monoxide also has an important role in forming smog.

This dataset reports on the annual trends assessed for the period 2011-2020.

More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 106235
Data type Table
Row count 10
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Carbon monoxide seasonal trends, 2011-2020

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

24
1
Added
13 Oct 2021

This dataset was first added to MfE Data Service on 13 Oct 2021.

Carbon monoxide (CO) is a colourless, odourless and tasteless gas. The most common sources of carbon monoxide are from the incomplete combustion of fossil fuels such as fuel used by vehicles, and from wood and coal, commonly burnt in fires for home heating. Other common sources of carbon monoxide are tobacco smoke and indoor gas fires. It also occurs naturally, for example, from volcanoes and wildfires.

Carbon monoxide can affect human health by interfering with the blood’s ability to absorb and circulate oxygen and by aggravating heart conditions. It has a relatively long life in the atmosphere – about three months. This is due to the slow rate at which carbon monoxide oxidises, forming carbon dioxide (a greenhouse gas). Carbon monoxide also has an important role in forming smog.

This dataset reports on the seasonal trends assessed for the period 2011-2020.

More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 106236
Data type Table
Row count 46
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Ground-level ozone annual trends, 2011-2020

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

18
1
Added
13 Oct 2021

This dataset was first added to MfE Data Service on 13 Oct 2021.

Ground-level (tropospheric) ozone (O3) exists at a natural background level but is also produced when nitrogen oxides (NOx) and volatile organic compounds from vehicle emissions, petrol fumes, industrial processes solvents, and other human-made sources react in the presence of heat and sunlight. It is the primary component of photochemical smog. Ozone also occurs naturally in the stratosphere, where it protects us from ultraviolet radiation – this ozone occasionally can mix downwards to ground level.

Ozone is a colourless, odourless gas. Exposure to high concentrations of ozone can cause respiratory health problems and is linked to cardiovascular health problems and increased mortality. Those most at risk include people with asthma, children, older adults, and people who are active outdoors, such as outdoor workers. People with certain genetic characteristics and nutrient deficiencies are also at greater risk from ozone exposure. Ozone can also affect sensitive vegetation and ecosystems and can cause damage during the growing season.

This dataset reports on the annual trends assessed for the period 2011-2020.

More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 106237
Data type Table
Row count 1
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Ground-level ozone seasonal trends, 2011-2020

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

19
1
Added
13 Oct 2021

This dataset was first added to MfE Data Service on 13 Oct 2021.

Ground-level (tropospheric) ozone (O3) exists at a natural background level but is also produced when nitrogen oxides (NOx) and volatile organic compounds from vehicle emissions, petrol fumes, industrial processes solvents, and other human-made sources react in the presence of heat and sunlight. It is the primary component of photochemical smog. Ozone also occurs naturally in the stratosphere, where it protects us from ultraviolet radiation – this ozone occasionally can mix downwards to ground level.

Ozone is a colourless, odourless gas. Exposure to high concentrations of ozone can cause respiratory health problems and is linked to cardiovascular health problems and increased mortality. Those most at risk include people with asthma, children, older adults, and people who are active outdoors, such as outdoor workers. People with certain genetic characteristics and nutrient deficiencies are also at greater risk from ozone exposure. Ozone can also affect sensitive vegetation and ecosystems and can cause damage during the growing season.

This dataset reports on the seasonal trends assessed for the period 2011-2020.

More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 106238
Data type Table
Row count 4
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed
Results 41 to 50 of 67