Spring rainfall trends, 1960–2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

3882
9
Added
12 Oct 2017

This dataset was first added to MfE Data Service on 12 Oct 2017.

Spring rainfall trends for 30 representative sites from 1960–2016.
Rain is vital for life – it supplies the water we need to drink and to grow our food, keeps our ecosystems healthy, and supplies our electricity. New Zealand’s mountainous terrain and location in the roaring forties mean rainfall varies across the country. Changes in rainfall amount or timing can significantly affect agriculture, energy, recreation, and the environment. For example, an increase or decrease of rainfall in spring can have marked effects on crops or fish populations.
Trend direction was assessed using the Theil-Sen estimator and the Two One-Sided Test (TOST) for equivalence at the 95% confidence level.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89403
Data type Table
Row count 30
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Trends in maximum highest annual wind gust, 1972–2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

3976
13
Added
12 Oct 2017

This dataset was first added to MfE Data Service on 12 Oct 2017.

Trends in maximum highest annual wind gust, 1972–2016. The number of days with a maximum gust in the 99th percentile provides information on the frequency of extreme wind events. Percentiles are obtained from all available daily maximum wind gust data. On average, the 99th percentile daily maximum wind gust will be exceeded on approximately 3.6 days per year. Therefore, annual counts higher than this indicate more days than usual with very strong wind gusts recorded; annual counts lower than 3.6 indicate fewer strong wind gust days than usual. By using a percentile threshold we can identify events that are extreme for a particular location. Some places are naturally subject to stronger winds than others, so vegetation can become ‘wind-hardened’ and may have a higher tolerance to high wind gusts (eg a 100 km/hr wind gust may be damaging at one location, but not at another). Using a relative threshold accounts for these differences and better captures extreme wind gust occurrences. The highest maximum gust per year and the average annual highest maximum wind gust both provide information on the magnitude of extreme wind events.
Steady wind can be an important resource, but strong gusts can damage property, topple trees, and disrupt transportation, communications, and electricity. Extreme wind events can occur with frontal weather systems, around strong convective storms such as thunderstorms, and with ex–tropical cyclones. Projections indicate climate change may alter the occurrence of extreme wind events, with the strength of extreme winds expected to increase over the southern half of the North Island and the South Island, especially east of the Southern Alps, and decrease from Northland to Bay of Plenty. Monitoring can help us gauge the potential of, and prepare for, such events.
Trend direction was assessed using the Theil-Sen estimator and the Two One-Sided Test (TOST) for equivalence at the 95% confidence level.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89424
Data type Table
Row count 30
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Ozone hole (1979–2014)

Licence

Creative Commons Attribution 3.0 New Zealand

You may use this work for commercial purposes.

You must attribute the creator in your own works.

4648
26
Added
01 Oct 2015

This dataset was first added to MfE Data Service on 01 Oct 2015.

Ozone protects the Earth from harmful levels of UV radiation. The ozone hole is an area of reduced stratospheric ozone that forms over Antarctica each spring, due to ozone-depleting substance. Reporting on the state of the ozone hole provides important context for the state of ozone concentrations globally.
This dataset relates to the "Ozone hole" measure on the Environmental Indicators, Te taiao Aotearoa website.

Table ID 52563
Data type Table
Row count 35
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Growing degree days trend assessment, for New Zealand, the North Island, and the South Island, 1972/3–2015/6

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

4038
11
Added
17 Oct 2017

This dataset was first added to MfE Data Service on 17 Oct 2017.

Growing degree days (GDD) measures the amount of warmth available for plant and insect growth and can be used to predict when flowers will bloom and crops and insects will mature. GDD counts the total number of degrees Celsius each day is above a threshold temperature. In this report we used 10 degrees Celsius. Increased GDD means that plants and insects reach maturity faster, provided that other conditions necessary for growth are favourable, such as sufficient moisture and nutrients. As a measure of temperature, GDD experiences short-term changes in response to climate variations, such as El Niño, and in the longer-term is affected by our warming climate.
Growing degree days (GDD) counts the number of days that are warmer than a threshold temperature (Tbase) in a year. GDD is calculated by subtracting the Tbase from the average daily temperature (maximum plus minimum temperature divided by two). If the average daily temperature is less than Tbase the GDD for that day is assigned a value of zero.
This dataset gives the trend in GDD over growing seasons (July 1 – June 30 of the following year) for New Zealand and the North and South Islands.
Trend direction was assessed using the Theil-Sen estimator and the Two One-Sided Test (TOST) for equivalence at the 95% confidence level
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89476
Data type Table
Row count 3
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Daily average column ozone by DOY (1978–2013)

Licence

Creative Commons Attribution 3.0 New Zealand

You may use this work for commercial purposes.

You must attribute the creator in your own works.

3633
8
Added
01 Oct 2015

This dataset was first added to MfE Data Service on 01 Oct 2015.

Ozone (O3) is a gas that is of interest in two regions of Earth’s atmosphere – at ground level and in the upper atmosphere (stratosphere). Stratospheric ozone absorbs ultraviolet (UV) rays from the sun and protects Earth from harmful levels of UV. Exposure to these UV rays has been linked to skin cancer. Monitoring variations in stratospheric ozone concentrations is important in New Zealand as we have high rates of skin cancers.
Ozone data for Lauder have been supplied in two forms: Measurements taken with Dobson spectrophotometer (number 72) and data assimilated from satellite measurements recalibrated against the global Dobson network. The Dobson spectrophotometer has been in operation at Lauder since January 1987. The timeseries for interpolated satellite data is available from 1978. Both timeseries are provided until 2013.
This dataset is the assimilated dataset which is available from 1978 to 2013. Measurements are in Dobson units (DU). One DU represents the amount of ozone molecules needed to produce a 0.01mm layer of pure ozone.
These datasets contain, annual measurements by DOY and annual statistics of mean, standard deviation, minimum and maximum.
Further information can be found in:
Liley, B, Querel, B, & McKenzie, R (2014). Measurements of Ozone and UV for New Zealand. Prepared for the Ministry for the Environment, Wellington. Available at data.mfe.govt.nz/x/LoPyPo on the Ministry for the Environment dataservice (data.mfe.govt.nz/).
This dataset relates to the "Ozone concentrations" measure on the Environmental Indicators, Te taiao Aotearoa website.

Table ID 52559
Data type Table
Row count 366
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Monthly El Niño Southern Oscillation Index, 1986–2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

5220
70
Added
12 Oct 2017

This dataset was first added to MfE Data Service on 12 Oct 2017.

The El Niño Southern Oscillation (ENSO) is the movement of warm equatorial water across the Pacific Ocean and the atmospheric response. It occurs every 2–7 years, typically lasting 6–18 months. ENSO has three phases: neutral, El Niño and La Niña. In New Zealand an El Niño phase in summer can bring increased westerly winds, more rain in the west, and drought in the east; in winter it can lead to more cool southerly winds. During a La Niña phase we may experience more north-easterly winds, wetter conditions in the north and east, and higher sea levels.
This dataset relates to monthly ENSO values.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89381
Data type Table
Row count 372
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Frost and warm days, 1972–2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

4016
25
Added
12 Oct 2017

This dataset was first added to MfE Data Service on 12 Oct 2017.

The number of frost and warm days changes from year to year in response to climate variation, such as the warming pattern induced by El Niño. Climate models project we may experience fewer cold and more warm extremes in the future. Changes in the number of frost and warm days can affect agriculture, recreation, and our behaviour, for example, what we do to keep safe on icy roads or whether to use air conditioning to keep cool.
A frost day is when the minimum temperature recorded is below 0 degrees Celsius. It refers to a temperature measured in an instrument screen 1.2 m above the ground rather than a ‘ground frost’. We define a warm day as having a maximum recorded temperature above 25 degrees Celsius. The threshold of 25 degrees Celsius is chosen to represent days where action might be taken to keep cool (eg turn air conditioning on).
This dataset gives the number of frost and warm days per month and calendar year for New Zealand, the North and South Islands, and all 30 sites.
For frost days we have used calendar years. For warm days we have used growing season (July 1 – June 30 of the following year).
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89387
Data type Table
Row count 32667
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Notified cases of salmonellosis (1997–2013)

Licence

Creative Commons Attribution 3.0 New Zealand

You may use this work for commercial purposes.

You must attribute the creator in your own works.

3568
8
Added
01 Oct 2015

This dataset was first added to MfE Data Service on 01 Oct 2015.

Bacteria and parasites like campylobacter, salmonella, and cryptosporidium can contaminate our food and water, leading to serious illness. Campylobacter, salmonella, and cryptosporidium are influenced by temperature and other climate variables, and incidence rates may increase as climate change causes temperatures to rise. Monitoring the incidence rates of illnesses can help us assess the health risks related to climate change and better prepare for disease outbreaks.
This dataset relates to the "Food and water-borne diseases" measure on the Environmental Indicators, Te taiao Aotearoa website.

Table ID 52555
Data type Table
Row count 17
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Influenza like illness weekly consultation rates, 2000–16

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

4543
9
Added
14 Oct 2017

This dataset was first added to MfE Data Service on 14 Oct 2017.

Influenza is a potentially life-threatening virus that spreads quickly from person to person. It is a significant public health issue in this country, with 10–20 percent of New Zealanders infected every year. While influenza can occur all year round, incidence generally peaks in winter and spring in New Zealand. Some studies suggest this is because the virus can survive longer outside the body in periods of colder weather and low humidity (dry conditions).
Influenza infections may decline as our climate changes. Warmer projected temperatures and higher humidity during winter and spring may contribute to reduced annual influenza rates. However, influenza infection is also affected by factors besides temperature and humidity.
These data are reported in an annual surveillance report by the Institute of Environmental Science and Research. See the 2015 report for more information (Institute of Environmental Science and Research, 2016).
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89456
Data type Table
Row count 374
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Annual glacier ice volumes trend, 1977–2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

4752
19
Added
12 Oct 2017

This dataset was first added to MfE Data Service on 12 Oct 2017.

A glacier is a body of slow-moving ice, at least 1 hectare in area that has persisted for two decades or longer. New Zealand has 3,144 glaciers. Most are located along the Southern Alps on the South Island, although Mount Ruapehu on the North Island supports 18 glaciers. New Zealand’s large glaciers are noteworthy for their large debris cover. The exceptions, Franz Joseph and Fox glaciers, are rare examples of glaciers that terminate in a rainforest.
Glacier volume is strongly influenced by climate factors, such as temperature and precipitation, which scientists expect to be affected by the warming climate. Glacial ice is an important water resource. Changes to ice storage and melting can affect ecological and hydropower resources downstream, as well as important cultural values and tourism.
Trend direction was assessed using the Theil-Sen estimator and the Two One-Sided Test (TOST) for equivalence at the 95% confidence level.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89397
Data type Table
Row count 1
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed
Results 61 to 70 of 119