Forest carbon stocks, 1990–2015

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

3888
23
Added
17 Oct 2017

This dataset was first added to MfE Data Service on 17 Oct 2017.

Forest carbon stocks and areas, including stock changes, areas, and deforestation.
New Zealand’s indigenous and exotic forests absorb carbon dioxide (CO2) from the atmosphere through photosynthesis and store the carbon as biomass and in the soil. On average, more than twice as much carbon per hectare is stored in New Zealand’s mature indigenous forests than in exotic forests planted for wood production. Regenerating indigenous forests are also an important store of carbon, adding carbon every year as they grow. Total carbon stored in exotic forests will fluctuate over decades as the forests grow from seedlings to mature trees, are harvested, and replanted. Because CO2 is the major driver of climate change, forests provide important mitigation services and help New Zealand meet its climate change commitments.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89475
Data type Table
Row count 1066
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Trends in number of days with a maximum gust in the 99th percentile, 1972–2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

3903
6
Added
12 Oct 2017

This dataset was first added to MfE Data Service on 12 Oct 2017.

Trends in number of days with a maximum gust in the 99th percentile, 1972–2016. The number of days with a maximum gust in the 99th percentile provides information on the frequency of extreme wind events. Percentiles are obtained from all available daily maximum wind gust data. On average, the 99th percentile daily maximum wind gust will be exceeded on approximately 3.6 days per year. Therefore, annual counts higher than this indicate more days than usual with very strong wind gusts recorded; annual counts lower than 3.6 indicate fewer strong wind gust days than usual. By using a percentile threshold we can identify events that are extreme for a particular location. Some places are naturally subject to stronger winds than others, so vegetation can become ‘wind-hardened’ and may have a higher tolerance to high wind gusts (eg a 100 km/hr wind gust may be damaging at one location, but not at another). Using a relative threshold accounts for these differences and better captures extreme wind gust occurrences. The highest maximum gust per year and the average annual highest maximum wind gust both provide information on the magnitude of extreme wind events.
Steady wind can be an important resource, but strong gusts can damage property, topple trees, and disrupt transportation, communications, and electricity. Extreme wind events can occur with frontal weather systems, around strong convective storms such as thunderstorms, and with ex–tropical cyclones. Projections indicate climate change may alter the occurrence of extreme wind events, with the strength of extreme winds expected to increase over the southern half of the North Island and the South Island, especially east of the Southern Alps, and decrease from Northland to Bay of Plenty. Monitoring can help us gauge the potential of, and prepare for, such events.
Trend direction was assessed using the Theil-Sen estimator and the Two One-Sided Test (TOST) for equivalence at the 95% confidence level.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89423
Data type Table
Row count 30
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Ozone hole, 1979–2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

4597
46
Added
14 Oct 2017

This dataset was first added to MfE Data Service on 14 Oct 2017.

Ozone is a gas that forms a naturally occurring layer in the upper atmosphere (stratosphere), protecting Earth from the sun’s ultraviolet (UV) light. The ozone hole is an area of reduced stratospheric ozone. It forms in spring over Antarctica because of ozone-depleting substances (ODSs) produced from human activities. The ozone hole has started to shrink due to the phase-out of ODSs, and it is possible that it will cease to form by the middle of this century.
The ozone hole does not have a large effect on the concentration of ozone over New Zealand. However, when the ozone hole breaks up in spring, it can send ‘plumes’ of ozone-depleted air over New Zealand. Reporting on the state of the ozone hole helps us understand the state of ozone concentrations globally.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89466
Data type Table
Row count 37
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Frost and warm days, 1972–2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

3774
25
Added
12 Oct 2017

This dataset was first added to MfE Data Service on 12 Oct 2017.

The number of frost and warm days changes from year to year in response to climate variation, such as the warming pattern induced by El Niño. Climate models project we may experience fewer cold and more warm extremes in the future. Changes in the number of frost and warm days can affect agriculture, recreation, and our behaviour, for example, what we do to keep safe on icy roads or whether to use air conditioning to keep cool.
A frost day is when the minimum temperature recorded is below 0 degrees Celsius. It refers to a temperature measured in an instrument screen 1.2 m above the ground rather than a ‘ground frost’. We define a warm day as having a maximum recorded temperature above 25 degrees Celsius. The threshold of 25 degrees Celsius is chosen to represent days where action might be taken to keep cool (eg turn air conditioning on).
This dataset gives the number of frost and warm days per month and calendar year for New Zealand, the North and South Islands, and all 30 sites.
For frost days we have used calendar years. For warm days we have used growing season (July 1 – June 30 of the following year).
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89387
Data type Table
Row count 32667
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Melanoma registration rates, 1948–2015

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

3901
12
Added
14 Oct 2017

This dataset was first added to MfE Data Service on 14 Oct 2017.

New Zealand and Australia have the world’s highest rates of melanoma, the most serious type of skin cancer. Melanoma is mainly caused by exposure to ultraviolet (UV) light, usually from the sun. New Zealand has naturally high UV levels, especially during summer.
The risk of developing melanoma is affected by factors such as skin colour and type, family history, and the amount of sun exposure. Melanoma can affect people at any age, but the chance of developing a melanoma increases with age. We report on age-standardised rates of melanoma to account for the increasing proportion of older people in our population.
Our data on melanoma registrations come from the New Zealand Cancer Registry and the Ministry of Health's Mortality Collection. The passing of the Cancer Registry Act 1993 and Cancer Registry Regulations 1994 led to significant improvements in data quality and coverage (Ministry of Health, 2013). A sharp increase in registrations after 1993 is likely to have been related to these legislative and regulatory changes; for this reason we have only analysed data from 1996.
2014–15 data are provisional and subject to change.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89458
Data type Table
Row count 204
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Days with wind gusts greater than gale force (1975–13)

Licence

Creative Commons Attribution 3.0 New Zealand

You may use this work for commercial purposes.

You must attribute the creator in your own works.

3988
40
Added
01 Oct 2015

This dataset was first added to MfE Data Service on 01 Oct 2015.

Strong wind events can cause significant damage, for example, to trees and buildings. They can occur with frontal weather systems and around strong convection events, such as thunderstorms. Global climate change may change the frequency of damaging wind events in almost all areas in New Zealand in winter and decrease the frequency in summer. Monitoring can help us gauge the potential of, and prepare for, such events.
Further information can be found in:
Tait, A, Macara, G, & Paul, V. (2014) Preparation of climate datasets for the 2015 Environmental Synthesis Report: Temperature, Rainfall, Wind, Sunshine and Soil Moisture. Prepared for Ministry for the Environment. Available at data.mfe.govt.nz/x/Fwn9AL on the Ministry for the Environment dataservice (data.mfe.govt.nz/).
This dataset relates to the "Occurrence of potentially damaging wind" measure on the Environmental Indicators, Te taiao Aotearoa website.

Table ID 52585
Data type Table
Row count 8203
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

New Zealand greenhouse gas emissions summary data, 1990–2015

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

4330
44
Added
13 Oct 2017

This dataset was first added to MfE Data Service on 13 Oct 2017.

New Zealand greenhouse gas emissions source and sink summary data by sector and gas for 1990-2015. Data are sourced from the 1990-2015 New Zealand Greenhouse Gas Emissions Inventory. Greenhouse gases (GHGs) absorb heat from Earth’s surface, warming the atmosphere and changing our climate. New Zealand’s share of GHG emissions is very small, but our gross emissions per person are high. Emissions mainly come from combustion of fossil fuels that emit carbon dioxide (CO2), and agriculture which emits methane (CH4) and nitrous oxide (N2O). Carbon dioxide remains in the atmosphere much longer than other major GHGs. Because of this, today’s global CO2 emissions will continue to influence atmospheric CO2 concentrations for a very long time. Methane and N2O trap heat better than CO2 but leave the atmosphere faster.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89429
Data type Table
Row count 26
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Daily temperature, 1909 - 2019

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

19
1
Added
14 Oct 2020

This dataset was first added to MfE Data Service on 14 Oct 2020.

DATA SOURCE: National Institute for Water and Atmospheric Research (NIWA)
[Technical report available at www.mfe.govt.nz/publications/environmental-reporti...]

Adapted by Ministry for the Environment and Statistics New Zealand to provide for environmental reporting transparency

This lowest aggregation dataset, was used to develop three ‘Our Atmosphere and Climate’ indicators. See Statistics New Zealand indicator links for specific methodologies and state/trend datasets (see ‘Shiny App’ downloads).
1) Temperature (www.stats.govt.nz/ndicators/temperature)
2) First and last frost days (www.stats.govt.nz/ndicators/frost-and-warm-days)
3) Growing degree days (www.stats.govt.nz/ndicators/growing-degree-days)

IMPORTANT INFORMATION
Due to the size of this dataset (111 MB), a 32-bit version of Microsoft Excel will only display/download ~ 1 million rows. A DBMS, statistical or GIS application is needed to view the entire dataset.

This dataset shows two measures of temperature change in New Zealand: New Zealand’s national temperature from NIWA’s ‘seven-station’ temperature series from 1909 to 2019, and temperature at 30 sites around the country from at least 1972 to 2019. For national temperature, we report daily average, minimum and maximum temperatures. We also present New Zealand national and global temperature anomalies.

More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 105056
Data type Table
Row count 2049471
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Extreme wind, 1972–2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

3998
55
Added
12 Oct 2017

This dataset was first added to MfE Data Service on 12 Oct 2017.

Extreme wind annual statistics for 30 regionally representative sites. The number of days with a maximum gust in the 99th percentile provides information on the frequency of extreme wind events. Percentiles are obtained from all available daily maximum wind gust data. On average, the 99th percentile daily maximum wind gust will be exceeded on approximately 3.6 days per year. Therefore, annual counts higher than this indicate more days than usual with very strong wind gusts recorded; annual counts lower than 3.6 indicate fewer strong wind gust days than usual. By using a percentile threshold we can identify events that are extreme for a particular location. Some places are naturally subject to stronger winds than others, so vegetation can become ‘wind-hardened’ and may have a higher tolerance to high wind gusts (eg a 100 km/hr wind gust may be damaging at one location, but not at another). Using a relative threshold accounts for these differences and better captures extreme wind gust occurrences. The highest maximum gust per year and the average annual highest maximum wind gust both provide information on the magnitude of extreme wind events.
Steady wind can be an important resource, but strong gusts can damage property, topple trees, and disrupt transportation, communications, and electricity. Extreme wind events can occur with frontal weather systems, around strong convective storms such as thunderstorms, and with ex-tropical cyclones. Projections indicate climate change may alter the occurrence of extreme wind events, with the strength of extreme winds expected to increase over the southern half of the North Island and the South Island, especially east of the Southern Alps, and decrease from Northland to Bay of Plenty. Monitoring can help us gauge the potential of, and prepare for, such events.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89425
Data type Table
Row count 1327
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Deforestation trend, 1990–2015

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

4085
24
Added
12 Oct 2017

This dataset was first added to MfE Data Service on 12 Oct 2017.

New Zealand’s indigenous and exotic forests absorb carbon dioxide (CO2) from the atmosphere through photosynthesis and store the carbon as biomass and in the soil. On average, more than twice as much carbon per hectare is stored in New Zealand’s mature indigenous forests than in exotic forests planted for wood production. Regenerating indigenous forests are also an important store of carbon, adding carbon every year as they grow. Total carbon stored in exotic forests will fluctuate over decades as the forests grow from seedlings to mature trees, are harvested, and replanted. Because CO2 is the major driver of climate change, forests provide important mitigation services and help New Zealand meet its climate change commitments.
Trend direction was assessed using the Theil-Sen estimator and the Two One-Sided Test (TOST) for equivalence at the 95% confidence level.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89408
Data type Table
Row count 3
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed
Results 21 to 30 of 119