New Zealand's national temperature, 1909–2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

9604
206
Added
14 Oct 2017

This dataset was first added to MfE Data Service on 14 Oct 2017.

This dataset relates to NIWA's 'seven-station' temperature series uses temperature measurements from seven 'climate stations'.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89453
Data type Table
Row count 424
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Potential evapotranspiration deficit (PED), 1972–2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

10750
67
Added
13 Oct 2017

This dataset was first added to MfE Data Service on 13 Oct 2017.

Interpolated PED values at 30 regionally representative sites.
Soil moisture is vital for plant growth. When plants cannot access the water they need, growth is reduced, affecting crops and food for livestock, and native biodiversity. Over a sustained period, a drought can have significant social and economic costs, particularly for rural communities.
Potential evapotranspiration deficit (PED) can be thought of as a drought index. It is the difference between how much water could potentially be lost from the soil through evapotranspiration and how much is actually available. When PED is high, plants do not have the full amount of water available they need for growth. PED is measured in growing seasons (the 12 months from 1 July to 30 June of the following year. Data covers each of the growing seasons from 1 July 1972, with the last growing season in the series ending on 30 June 2016. More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89437
Data type Table
Row count 1320
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Daily temperature, 1909 - 2019

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

5305
267
Added
14 Oct 2020

This dataset was first added to MfE Data Service on 14 Oct 2020.

DATA SOURCE: National Institute for Water and Atmospheric Research (NIWA)
[Technical report available at www.mfe.govt.nz/publications/environmental-reporti...]

Adapted by Ministry for the Environment and Statistics New Zealand to provide for environmental reporting transparency

This lowest aggregation dataset, was used to develop three ‘Our Atmosphere and Climate’ indicators. See Statistics New Zealand indicator links for specific methodologies and state/trend datasets (see ‘Shiny App’ downloads).
1) Temperature (www.stats.govt.nz/ndicators/temperature)
2) First and last frost days (www.stats.govt.nz/ndicators/frost-and-warm-days)
3) Growing degree days (www.stats.govt.nz/ndicators/growing-degree-days)

IMPORTANT INFORMATION
Due to the size of this dataset (111 MB), a 32-bit version of Microsoft Excel will only display/download ~ 1 million rows. A DBMS, statistical or GIS application is needed to view the entire dataset.

This dataset shows two measures of temperature change in New Zealand: New Zealand’s national temperature from NIWA’s ‘seven-station’ temperature series from 1909 to 2019, and temperature at 30 sites around the country from at least 1972 to 2019. For national temperature, we report daily average, minimum and maximum temperatures. We also present New Zealand national and global temperature anomalies.

More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 105056
Data type Table
Row count 2049471
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Drought, 1972 - 2019, state

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

3146
18
Added
14 Oct 2020

This dataset was first added to MfE Data Service on 14 Oct 2020.

DATA SOURCE: National Institute for Water and Atmospheric Research (NIWA)
[Technical report available at www.mfe.govt.nz/publications/environmental-reporti...]

Adapted by Ministry for the Environment and Statistics New Zealand to provide for environmental reporting transparency

Dataset used to develop the "Drought indicator [available at www.stats.govt.nz/indicators/drought]
This indicator uses the Standardised Precipitation-Evapotranspiration Index (SPEI), which incorporates temperature and precipitation, to measure drought events. We report on drought frequency, duration, severity, and intensity at three different time scales (short-term (3 months), medium-term (6 months) and long-term (12 months)). These different time scales are approximately equivalent to meteorological, agricultural, and hydrological drought, respectively. We do this for 30 sites across New Zealand from 1972 to 2019.

More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 105052
Data type Table
Row count 51300
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Annual rainfall trends, 1960–2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

8395
74
Added
12 Oct 2017

This dataset was first added to MfE Data Service on 12 Oct 2017.

Annual rainfall trends for 30 representative sites from 1960–2016.
Rain is vital for life – it supplies the water we need to drink and to grow our food, keeps our ecosystems healthy, and supplies our electricity. New Zealand’s mountainous terrain and location in the roaring forties mean rainfall varies across the country. Changes in rainfall amount or timing can significantly affect agriculture, energy, recreation, and the environment. For example, an increase or decrease of rainfall in spring can have marked effects on crops or fish populations.
Trend direction was assessed using the Theil-Sen estimator and the Two One-Sided Test (TOST) for equivalence at the 95% confidence level.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89400
Data type Table
Row count 30
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Rainfall, 1960–2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

10348
358
Added
12 Oct 2017

This dataset was first added to MfE Data Service on 12 Oct 2017.

Daily rainfall values for 30 representative sites from 1960–2016.
Rain is vital for life – it supplies the water we need to drink and to grow our food, keeps our ecosystems healthy, and supplies our electricity. New Zealand’s mountainous terrain and location in the roaring forties mean rainfall varies across the country. Changes in rainfall amount or timing can significantly affect agriculture, energy, recreation, and the environment. For example, an increase or decrease of rainfall in spring can have marked effects on crops or fish populations.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89401
Data type Table
Row count 617808
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Annual growing degree days

Licence

Creative Commons Attribution 3.0 New Zealand

You may use this work for commercial purposes.

You must attribute the creator in your own works.

12842
136
Added
01 Oct 2015

This dataset was first added to MfE Data Service on 01 Oct 2015.

Growing degree days (GDD) is the measure of how much warmth is available for plant and insect growth during a growing season. GDD information helps horticulturists and farmers predict plant growth and stock development. The GDD value changes in response to climate variations, such as El Niño. Long-term changes in GDD are a measure of changing climate conditions.
Further information can be found in:
Tait, A, Macara, G, & Paul, V. (2014) Preparation of climate datasets for the 2015 Environmental Synthesis Report: Temperature, Rainfall, Wind, Sunshine and Soil Moisture. Prepared for Ministry for the Environment. Available at data.mfe.govt.nz/x/Fwn9AL on the Ministry for the Environment dataservice (data.mfe.govt.nz/).
This dataset relates to the "Growing degree days" measure on the Environmental Indicators, Te taiao Aotearoa website.

Table ID 52574
Data type Table
Row count 12168
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Rainfall Intensity, 1960–2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

7475
91
Added
13 Oct 2017

This dataset was first added to MfE Data Service on 13 Oct 2017.

Two measures of rainfall intensity - percent of annual precipitation in the 95th percentile (r95ptot) and annual maximum one-day rainfall (rx1day).
Intense rainfall can result in flash floods or land slips that damage homes and property, disrupt transportation, and endanger lives. It can also interfere with recreation and increase erosion. Changes to the frequency of intense rainfall events can alter biodiversity.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89435
Data type Table
Row count 1710
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Rainfall, 1960 - 2019

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

3397
93
Added
14 Oct 2020

This dataset was first added to MfE Data Service on 14 Oct 2020.

DATA SOURCE: National Institute for Water and Atmospheric Research (NIWA)
[Technical report available at www.mfe.govt.nz/publications/environmental-reporti...]

Adapted by Ministry for the Environment and Statistics New Zealand to provide for environmental reporting transparency

Dataset used to develop the "Greenhouse gas concentrations" indicator [available at www.stats.govtnz/indicators/greenhouse-gas-concent...]

This lowest aggregation dataset, was used to develop two ‘Our Atmosphere and Climate’ indicators. See Statistics New Zealand indicator links for specific methodologies and state/trend datasets (see ‘Shiny App’ downloads).
1) Rainfall (www.stats.govt.nz/indicators/rainfall)
2) Extreme rainfall (a. www.stats.govt.nz/indicators/extreme-rainfall

This dataset shows daily rainfall at 30 sites across New Zealand from 1960 to 2019.

More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 105055
Data type Table
Row count 657450
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Extreme wind, 1972–2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

7866
102
Added
12 Oct 2017

This dataset was first added to MfE Data Service on 12 Oct 2017.

Extreme wind annual statistics for 30 regionally representative sites. The number of days with a maximum gust in the 99th percentile provides information on the frequency of extreme wind events. Percentiles are obtained from all available daily maximum wind gust data. On average, the 99th percentile daily maximum wind gust will be exceeded on approximately 3.6 days per year. Therefore, annual counts higher than this indicate more days than usual with very strong wind gusts recorded; annual counts lower than 3.6 indicate fewer strong wind gust days than usual. By using a percentile threshold we can identify events that are extreme for a particular location. Some places are naturally subject to stronger winds than others, so vegetation can become ‘wind-hardened’ and may have a higher tolerance to high wind gusts (eg a 100 km/hr wind gust may be damaging at one location, but not at another). Using a relative threshold accounts for these differences and better captures extreme wind gust occurrences. The highest maximum gust per year and the average annual highest maximum wind gust both provide information on the magnitude of extreme wind events.
Steady wind can be an important resource, but strong gusts can damage property, topple trees, and disrupt transportation, communications, and electricity. Extreme wind events can occur with frontal weather systems, around strong convective storms such as thunderstorms, and with ex-tropical cyclones. Projections indicate climate change may alter the occurrence of extreme wind events, with the strength of extreme winds expected to increase over the southern half of the North Island and the South Island, especially east of the Southern Alps, and decrease from Northland to Bay of Plenty. Monitoring can help us gauge the potential of, and prepare for, such events.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89425
Data type Table
Row count 1327
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed
Results 1 to 10 of 119