Carbon monoxide concentrations, 1996–17

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

5491
40
Added
15 Oct 2018

This dataset was first added to MfE Data Service on 15 Oct 2018.

Carbon monoxide (CO) is a gas formed by the incomplete combustion of fuels, particularly from motor vehicles, from burning wood and coal, and using unflued gas heaters for home heating. It also occurs naturally; for example, from wild fires.
Carbon monoxide can affect human health by interfering with the blood’s ability to carry oxygen and by aggravating heart conditions. It has a relatively long life in the atmosphere – about three months. This is due to the slow rate at which carbon monoxide oxidises, forming carbon dioxide (a greenhouse gas). Carbon monoxide also has an important role in forming smog.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 98415
Data type Table
Row count 2922098
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Natural sources of particulate matter, 2000–16

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

4567
14
Added
16 Oct 2018

This dataset was first added to MfE Data Service on 16 Oct 2018.

Particulate matter (PM) is made up of solid and liquid particles in the air. It is grouped according to its size – PM10 is less than 10 micrometres (µm) in diameter; PM2.5 is less than 2.5 µm in diameter. Health effects from exposure to PM include lung and cardiac disease, and premature death.
Natural sources of PM include sea salt, dust (airborne soil, also called crustal material), secondary sulphate, pollen, black carbon from wild fires, and volcanic ash. There is little evidence that sea salt particles themselves are harmful (World Health Organization (WHO), 2013) although whether sea salt that has interacted with urban air pollutants is harmful is not known. PM can also be produced by human activities, such as dust from construction or unsealed roads, but this is not considered natural because it comes from human activity.
Natural sources of PM are important because although they cannot be managed they still contribute to ambient concentrations, which are subject to the National Environmental Standards for Air Quality (NESAQ). Exceedances of the NESAQ occur when the 24-hour average PM10 concentration exceeds 50 micrograms per cubic metre (µg/m3). There is no NESAQ for PM2.5 exposure, so we report on exceedances of the WHO 24-hour average PM2.5 concentration guideline (25 µg/m3).
We report on data from nine sites from 2005–16 and report only on sea salt for natural PM because other sources of natural PM, such as dust and sulphate, can be generated by humans as well. We were not able to separate the natural from human-generated contributions. Analysis of particle size, composition, and sources in New Zealand shows that sea salt made the largest contribution to natural PM.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 98425
Data type Table
Row count 13484
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Nitrogen dioxide concentrations: New Zealand Transport Agency data, 2010–16

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

4638
30
Added
16 Oct 2018

This dataset was first added to MfE Data Service on 16 Oct 2018.

Nitrogen dioxide (NO2) is a gas that is harmful to human health, ecosystems, and plants (US EPA, 2008). It can be emitted directly into the air but is often formed as a secondary pollutant when nitric oxide (NO) emissions react with other chemicals. It also contributes to the formation of secondary particulate matter (PM) and ozone, which have their own health impacts. In New Zealand, motor vehicles are the main human-made source of nitrogen oxides (NOx), the collective term for NO2 and NO. Because nitrogen dioxide concentrations are closely associated with vehicle emissions, it can be used as a proxy for other motor-vehicle pollutants such as benzene, carbon dioxide, and carbon monoxide.
Human exposure to high nitrogen dioxide concentrations causes inflammation of the airways and respiratory problems, particularly asthma. Nitrogen dioxide causes leaf injury in plants exposed to high levels. It also contributes to forming secondary particulate matter and ozone, which have their own health impacts.
We report on observed nitrogen dioxide concentrations from the New Zealand Transport Agency’s (NZTA) monitoring network. NZTA has comprehensive coverage across New Zealand.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 98426
Data type Table
Row count 828
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Black carbon concentrations, 2002–17

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

4300
12
Added
15 Oct 2018

This dataset was first added to MfE Data Service on 15 Oct 2018.

Black carbon is a particle, often in the PM2.5 or ultra-fine size range, which is emitted from combustion sources and is commonly known as soot. In New Zealand most black carbon is emitted from vehicles (especially diesel vehicles), burning wood and coal for home heating, and outdoor burning. Both long and short-term exposure to black carbon is linked to serious health effects, such as respiratory and cardiovascular disease, cancer, and premature death (World Health Organization (WHO), 2013).
Black carbon warms the climate globally and regionally because it is efficient at absorbing energy from sunlight. Black carbon also increases ice and snow melt when deposited on these surfaces, darkening them and lowering albedo (proportion of light that is reflected) so they absorb more solar energy (Ramanathan & Carmichael, 2008).
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 98417
Data type Table
Row count 19077
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed
Results 11 to 14 of 14