Coastal sea-level rise 1901 - 2018

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

312
8
Added
14 Oct 2019

This dataset was first added to MfE Data Service on 14 Oct 2019.

This indicator measures the rise in annual mean coastal sea level relative to land. The national mean is derived from four long-term monitoring locations across New Zealand: Auckland, Wellington, Dunedin and Lyttelton. We also report the trends over time, from the beginning of our records until 2018. Relative sea-level rise includes the vertical land movement of the surrounding area (for example, a sinking landmass increases the rise in ocean sea level).

We report the change in annual mean coastal sea level to 2018 against the established baseline (mean sea level for 1986–2005) for the long-term sites plus an additional two sites: Moturiki (Mount Maunganui) and New Plymouth. These are not included in the national mean due to shorter records. We also measure the national annual sea-level rise for two time periods: the start of the records to 1960, and 1961–2018.

More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 104055
Data type Table
Row count 524
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Oceanic and coastal primary productivity 1998 - 2017

0
0
Added
16 Oct 2019

This dataset was first added to MfE Data Service on 16 Oct 2019.

This indicator measures the amount of phytoplankton in ocean water around New Zealand using satellite data. Phytoplankton are microscopic algae and primary producers, meaning they enable those higher up the food web to survive. Phytoplankton growth is affected by the availability of nutrients and light, which in turn are affected by the structure of the upper water column. Large-scale changes to climate and oceanographic conditions can change the water column structure and thus lead to changes in phytoplankton growth and primary productivity. Phytoplankton growth supports marine organisms throughout the marine environment, including fish, mammals, and seabirds (Pinkerton et al, 2019). We monitor the changes in phytoplankton by measuring chl-a concentration to provide an understanding of how marine ecosystems are changing. This affects the services we rely on for economic, cultural, and recreational purposes, such as fisheries (Nixon & Buckley, 2002).

More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 104058
Data type Table
Row count 10680
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Marine economy 2007 - 2017

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

253
2
Added
16 Oct 2019

This dataset was first added to MfE Data Service on 16 Oct 2019.

The marine economy shows the contribution marine-based economic activities make to the New Zealand economy as measured by gross domestic product (GDP). Measuring the marine economy shows how New Zealand’s marine environment is used to generate economic activity and how this changes over time. However, these activities can be a source of pressure on New Zealand’s marine environment.

Estimates of the marine economy are often used globally as an indicator of the marine environment’s societal and economic importance (Kildow & McIlgorm, 2010; Suris-Regueiro et al, 2013).

This indicator measures the contribution of marine-related industries to New Zealand’s marine economy. Currently measurable activity categories are:

·         offshore minerals
·         shipping
·         fisheries and aquaculture
·         marine services
·         marine tourism and recreation
·         government and defence.

More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 104057
Data type Table
Row count 429
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Ocean acidification state 1998 - 2017

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

10
0
Added
16 Oct 2019

This dataset was first added to MfE Data Service on 16 Oct 2019.

Ocean acidification is the long-term decrease in the pH of our coastal waters and oceans. This indicator measures the change in pH in subantarctic surface waters at a station east of Otago from 1998 to 2017, and also the pH at selected coastal sites via the New Zealand Ocean Acidification Observing Network (NZOA-ON) from 2015 to 2017.

More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 104052
Data type Table
Row count 6526
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Bycatch of protected species: Hector’s and Māui dolphins

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

249
2
Added
16 Oct 2019

This dataset was first added to MfE Data Service on 16 Oct 2019.

The South Island Hector’s and Māui dolphins are among the world’s smallest marine dolphins. Both are subspecies of the Hector’s dolphin Cephalorhynchus hectori. These coastal dolphins are endemic to New Zealand, which means that they are not found anywhere else. The Māui dolphin is found in the inshore waters of the west coast of the North Island, most often from Maunganui Bluff, north of Dargaville, to New Plymouth. The South Island Hector’s dolphin (hereafter referred to as ‘Hector’s dolphin’) is mostly found in the inshore waters around the South Island. Both subspecies are threatened with extinction: Hector’s dolphins have a population estimated at 15,000 and are classified as nationally vulnerable, while Māui dolphins have a population estimated at 63 individuals over one year old and are classified as nationally critical (Baker et al, 2019; MacKenzie & Clement, 2016; Baker et al, 2016).

Dolphins can become entangled in fishing gear used by both commercial and recreational fishers, with set nets posing a particularly high risk. The accidental capture of marine life in fishing gear is typically referred to as bycatch. Reporting the causes of death of protected species and specifically identifying the number of animals killed as a result of fishing activities helps us understand the pressures our protected marine species face from fishing.

DOC’s Hector’s and Māui dolphin incident database 1921-2018 provides data on reported deaths of Hector’s and Māui dolphins.

This indicator measures the number of reported Hector’s and Māui dolphin deaths from entanglement, categorised by type of fishing gear where possible, since 1998. The number of entanglements is compared to the total number of reported deaths.

More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 103967
Data type Table
Row count 337
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

BOMEC_15_Class_region

Licence

Creative Commons Attribution 3.0 New Zealand

You may use this work for commercial purposes.

You must attribute the creator in your own works.

5495
40
Updated
03 Jul 2018

This dataset was last updated on MfE Data Service on 03 Jul 2018.

The 15 class Benthic-Optimised Marine Environment Classification (BOMEC). The BOMEC divides the benthic environment into ecosystem types. These are grouped into three inshore groups, three continental shelf groups, and nine deeper-water groups. Each group represents areas with similar environmental variables, such as depth, temperature, salinity, and suspended sediment. The classification system considers the distributions of eight benthic taxonomic groups: asteroids, bryozoans, benthic foraminiferans, octocorals, polychaetes, matrix-forming scleratinian corals, sponges, and benthic fish.

Layer ID 52748
Data type Vector multipolygon
Feature count 15
Services Vector Query API, Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Benthic_Protected_Areas

Licence

Creative Commons Attribution 3.0 New Zealand

You may use this work for commercial purposes.

You must attribute the creator in your own works.

3317
24
Updated
03 Jul 2018

This dataset was last updated on MfE Data Service on 03 Jul 2018.

From the original files MFB0174_1_region_TM and MFB0174_1_rectangle_TM.

Sourced from MPI in May 2012. Contact Alana Corney.

Layer ID 52758
Data type Vector multipolygon
Feature count 17
Services Vector Query API, Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Marine reserves (2014)

Licence

Creative Commons Attribution 3.0 New Zealand

You may use this work for commercial purposes.

You must attribute the creator in your own works.

2731
30
Added
28 Sep 2015

This dataset was first added to MfE Data Service on 28 Sep 2015.

New Zealand’s four million km2 marine environment is diverse, with a range of coastal habitats and offshore seabed environments. We also have many marine species found only in New Zealand. Marine protected areas conserve or manage some of these unique habitats and species, while a range of other tools also provide marine protection. We report on the area covered by marine reserves as an indirect measure to understand the state of the marine environment.

Table ID 52518
Data type Table
Row count 28
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Conservation status of marine mammals

Licence

Creative Commons Attribution 3.0 New Zealand

You may use this work for commercial purposes.

You must attribute the creator in your own works.

2412
23
Added
19 Oct 2016

This dataset was first added to MfE Data Service on 19 Oct 2016.

New Zealand has a diverse range of marine mammal species and subspecies, including whales, dolphins, seals, and sea lions. Marine mammals are indicator species for the state of our marine environment. The conservation status of a species relates to its risk of extinction.
Many of these species are endemic (only found in) to New Zealand. They are apex species (near the top of the food chain) and can thrive only if their ecosystems are healthy. A decreasing population can indicate that the ecosystem is degrading. Marine mammals played an important part in New Zealand history; in the past whales and seals were hunted in great numbers. Now we have a rapidly-growing whale- and dolphin-watching industry.

Table ID 53481
Data type Table
Row count 29
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Coastal extreme waves (2008–15)

Licence

Creative Commons Attribution 3.0 New Zealand

You may use this work for commercial purposes.

You must attribute the creator in your own works.

2185
11
Added
19 Oct 2016

This dataset was first added to MfE Data Service on 19 Oct 2016.

Extreme wave indexes estimate the occurrence of extreme wave events in coastal and oceanic waters. Extreme wave indexes estimate the number of times a significant wave height exceeds one of three threshold values for at least 12 hours in 24 marine regions. The three wave-height thresholds are four metres, six metres, and eight metres.
This indicator estimates the exceedances of wave-height thresholds for each year from 2008 to 2015 in coastal areas.
Significant wave height is a measure of the ‘typical’ wave height in a place over a time period. It is four times the standard deviation of the water surface if, for example, you were to measure water moving up and down a jetty piling for an hour. The largest individual wave will typically have a height around twice the significant wave height.
We use three wave-height thresholds because of the regional variation in extreme wave events. In general, the north experiences less exposure to consistently strong winds, and the waves generated by them, than the south. Four-metre tall waves are considered extreme in the northern-most parts of New Zealand but are more common in the south. For the southern-most parts of New Zealand, eight-metre waves better represent extreme wave events.

Table ID 53476
Data type Table
Row count 54
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed
Results 21 to 30 of 83