Irrigated land 2002 and 2017

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

891
7
Added
16 Apr 2019

This dataset was first added to MfE Data Service on 16 Apr 2019.

This dataset shows the total irrigated agricultural land area across New Zealand for 2002 and 2017. Agricultural land irrigated in 2017 is broken down by types of irrigation systems and farm type.

Although it enables and improves farming, irrigation can also have adverse consequences relating to recreation, and can increase pollution and leaching of contaminants into waterways. Irrigation can affect the natural form and character of land (eg dry land to greener and wetter land), fishing, cultivation and food production, animal drinking water, water supply, commercial and industrial water use, and hydro-electric power generation. More irrigated land, and more water abstraction, can place increased pressure on river flows, as well as indirectly increasing pressure on land and fresh water by enabling increased agricultural intensity.

More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 99878
Data type Table
Row count 36
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Highly erodible land 2012

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

928
9
Added
16 Apr 2019

This dataset was first added to MfE Data Service on 16 Apr 2019.

The data identifies five classes of land in New Zealand at risk of erosion:

  1. high landslide risk – delivery to stream
  2. high landslide risk – non-delivery to steam
  3. moderate earthflow risk
  4. severe earthflow risk
  5. gully risk

Landslide erosion is the shallow (approximately 1m) and sudden failure of soil slopes during storm rainfall. Earthflow erosion is the slow downward movement (approximately 1m/year) of wet soil slopes towards waterways. Gully erosion is massive soil erosion that begins at gully heads and expands up hillsides over decadal time scales.

Erosion can have negative consequences on land productivity, water quality (via increased sedimentation and turbidity), the natural form of the land, and infrastructure.

New Zealand experiences high rates of soil erosion. In the North Island, this is mostly due to the historical clearance of forest for agriculture (see also Estimated long-term soil erosion). In contrast, erosion in the South Island is mostly due to natural processes, primarily high rainfall and steep mountain slopes.

It is important to identify areas of land at risk of severe erosion to inform land-use decisions and help prioritise regional soil conservation work.

More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 99877
Data type Table
Row count 240
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Nitrate leaching from livestock time series 1990–2017

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

1134
21
Added
16 Apr 2019

This dataset was first added to MfE Data Service on 16 Apr 2019.

We report on trends in nitrate-nitrogen from livestock that has leached from soil per year across New Zealand since 1990.

Nitrogen is an essential nutrient for plant growth. It occurs naturally, but in agricultural systems more nitrogen is commonly added to soils as fertiliser or as urine or dung from livestock. Not all the additional nitrogen can be used by plants and microorganisms, so some nitrate-nitrogen may leach (drain) from the soil. Livestock urine is the dominant source of nitrate-nitrogen leached from soil. Leached nitrate-nitrogen can enter groundwater and waterways, potentially causing ecological harm. The amount of nitrate-nitrogen leaching from the soil varies around the country as a result of different land uses, climates, and soils.

More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Summary report available at www.mfe.govt.nz/publications/fresh-water/spatial-n...

Table ID 99876
Data type Table
Row count 2016
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Conservation status of indigenous species 2018

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

1140
21
Added
16 Apr 2019

This dataset was first added to MfE Data Service on 16 Apr 2019.

Many of New Zealand’s indigenous plants and animals are endemic – found nowhere else in the world – and are our national taonga (treasure). New Zealand species make a significant contribution to global biodiversity, which is important for ecosystem processes and resilience, mahinga kai (traditional food gathering), and culture and recreation.

Conservation status is a representation of the threat classification of resident indigenous plant and animal species. The Department of Conservation (DOC) developed the New Zealand Threat Classification System (NZTCS) to provide a national system that is similar to the International Union for Conservation of Nature and Natural Resources Red List.

We report on four conservation status categories: threatened, at risk, not threatened, and data deficient. Conservation status categories ‘threatened’ and ‘at risk’ are divided into subcategories that provide more information on the species’ threat of extinction classification (adapted from Townsend et al, 2008). Species are classified as ‘data deficient’ if we lack information on the species, making threat classification assessment not possible.

More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 99875
Data type Table
Row count 10667
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

New Zealand’s greenhouse gas emissions by sector and gas 2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

977
6
Added
16 Apr 2019

This dataset was first added to MfE Data Service on 16 Apr 2019.

We measure gases that are added to the atmosphere through human activities. This does not include natural sources such as biological processes or volcanic emissions.

We report greenhouse gas (GHG) emissions in carbon dioxide equivalent (CO2-e) units, which is a measure for how much global warming a given type and amount of greenhouse gas causes, using the equivalent amount of carbon dioxide as the reference. CO2-e is used for describing different greenhouse gases in a common unit, which allows them to be reported consistently.

Data may not include the latest emissions data, which can be found on the Ministry for the Environment’s website.

More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 99874
Data type Table
Row count 30
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Lake water quality trends 2008–2017 1998–2017 and 1990–2017

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

929
9
Added
16 Apr 2019

This dataset was first added to MfE Data Service on 16 Apr 2019.

This dataset contains ten lake water quality variables based on measurements made at monitored lake sites: chlorophyll-a, nitrate-nitrogen, total nitrogen, ammoniacal nitrogen, dissolved reactive phosphorus, total phosphorus, Escherichia coli, water clarity, and lake trophic level index (TLI3 and TLI4). This dataset includes: - Median values for the period 2013 to 2017 - For selected indicators, how these values compare to the National Objectives Framework (NOF) (MfE, 2017) bands related to ecosystem health When nitrogen and phosphorus accumulate above certain concentrations in lakes (referred to as ‘nutrient enrichment’), they can stimulate excessive growth of algae and cyanobacteria. Chlorophyll-a is a measure of the phytoplankton (algae) biomass. The lake trophic level index (TLI) indicates the health of a lake based on concentrations of three variables:
· total nitrogen
· total phosphorus
· chlorophyll-a.

Water clarity is a measure of underwater visibility. Lakes with poor clarity and TLI are poor habitats for some species of animals and plants, and they may not be suitable for recreation. Ammoniacal nitrogen can be toxic to aquatic life if concentrations are high enough.

More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Summary report available at: www.mfe.govt.nz/publications/fresh-water/water-qua...

Table ID 99873
Data type Table
Row count 609
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Lake water quality state 2013–2017

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

970
10
Added
16 Apr 2019

This dataset was first added to MfE Data Service on 16 Apr 2019.

This dataset contains ten lake water quality variables based on measurements made at monitored lake sites: chlorophyll-a, nitrate-nitrogen, total nitrogen, ammoniacal nitrogen, dissolved reactive phosphorus, total phosphorus, Escherichia coli, water clarity, and lake trophic level index (TLI3 and TLI4). This dataset includes: - Median values for the period 2013 to 2017 - For selected indicators, how these values compare to the National Objectives Framework (NOF) (MfE, 2017) bands related to ecosystem health When nitrogen and phosphorus accumulate above certain concentrations in lakes (referred to as ‘nutrient enrichment’), they can stimulate excessive growth of algae and cyanobacteria. Chlorophyll-a is a measure of the phytoplankton (algae) biomass. The lake trophic level index (TLI) indicates the health of a lake based on concentrations of three variables:
· total nitrogen
· total phosphorus
· chlorophyll-a.
Water clarity is a measure of underwater visibility. Lakes with poor clarity and TLI are poor habitats for some species of animals and plants, and they may not be suitable for recreation. Ammoniacal nitrogen can be toxic to aquatic life if concentrations are high enough.

More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Summary report available at: www.mfe.govt.nz/publications/fresh-water/water-qua....

Table ID 99872
Data type Table
Row count 454
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

River water quality modelled state 2013–2017

Online
Only
Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

443
92
Updated
31 May 2019

This dataset was last updated on MfE Data Service on 31 May 2019.

IMPORTANT INFORMATION

1) The main (cleaned) dataset is structured by each row having a nzsegment and np_id combination. A large dataset (~ 1 GB) has resulted, due to the inclusion of the ANZG/NOF columns and the 10 different np_id values. There are ~ 6 million rows to this dataset, however a 32-bit version of Microsoft Excel will only display/download ~ 1 million rows. A DBMS, statistical or GIS application is needed to view the entire dataset.

2) A smaller raw dataset (see attachments) is provided which structures each row relating to a river segment and drops the ANZG/NOF columns.

3) The attached metadata/date quality report provides further information on the NOF, ANZG and the McDowell meet/does not meet attachment.

This dataset contains ten parameters of water quality based on measurements made at monitored river sites:

  • Nitrate-nitrogen
  • Ammoniacal nitrogen
  • Ammoniacal nitrogen (adjusted)
  • Total nitrogen
  • Total phosphorus
  • Dissolved reactive phosphorus
  • Water clarity
  • Turbidity
  • Escherichia coli
  • Macroinvertebrate community index These parameters are used to measure:
  • Modelled median values for all of New Zealand’s river length for the period 2013 to 2017
  • For selected indicators, how the modelled values compare to the National Objectives Framework (NOF) (MfE, 2017) bands related to ecosystem health and human health for recreation, and to expected concentrations in natural conditions, as shown by the default guideline values in the Australian and New Zealand guidelines for fresh and marine water quality (ANZG, 2018)

More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Summary report available at www.mfe.govt.nz/publications/fresh-water/spatial-m...

Table ID 99871
Data type Table
Row count 5927520
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

RiverQ ecoli modelled mcdowell meet clean

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

76
6
Added
16 Apr 2019

This item was first added to MfE Data Service on 16 Apr 2019

Document ID21922
File nameriverq-ecoli-modelled-mcdowell-meet-clean.csv
TypeCSV
Size57.4 MB

WQ PredictionsDF REC2 29November 2018

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

54
3
Added
15 Apr 2019

This item was first added to MfE Data Service on 15 Apr 2019

Document ID21921
File namewq-predictionsdf-rec2-29november-2018.csv
TypeCSV
Size195 MB
Results 71 to 80 of 1091