Groundwater quality state 2010–2014

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

1910
9
Added
14 Apr 2019

This dataset was first added to MfE Data Service on 14 Apr 2019.

This dataset measures groundwater quality in New Zealand’s aquifers based on measurements made at monitored sites. Many factors influence the quality of our groundwater. Nitrogen, which occurs naturally in groundwater, can increase in concentrations due to agricultural and urban land use, and infrastructure such as waste treatment plants. High concentrations of nitrate-nitrogen in groundwater can affect human health and the quality of surrounding rivers and lakes that receive inflows from groundwater. Ammoniacal nitrogen can cause an undesirable smell that may make groundwater unsuitable for drinking water. Natural processes in groundwater can convert nitrate-nitrogen into ammoniacal nitrogen or other forms under some chemical conditions. Surplus phosphorus drains (leaches) into groundwater as dissolved reactive phosphorus. Too much nitrate-nitrogen, ammoniacal nitrogen, and phosphorus can lead to excessive plant and algae growth where groundwater flows into surface water. E. coli in groundwater is measured in colony forming units (cfu) and can indicate the presence of pathogens (disease-causing organisms) from animal or human faeces. The pathogens can cause illness for anyone who ingests them.

More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 99855
Data type Table
Row count 741
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

2015 2016 Deforestation Mapping Report Indufor Asia Pacific.pdf

354
142
Updated
10 Apr 2019

This item was last updated on MfE Data Service on 10 Apr 2019

23

Indufor Asia Pacific 2015-2016 Deforestation Mapping report for the LUCAS NZ Land Use Map

Document ID21889
File name2015-2016-deforestation-mapping-report-indufor-asia-pacificpdf.pdf
TypePDF
Size1.49 MB

Sea-draining catchments

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

974
176
Updated
24 Jul 2019

This dataset was last updated on MfE Data Service on 24 Jul 2019.

This dataset provides boundaries for catchments that drain to the sea (i.e. sea draining catchments).

It is extracted from the Freshwater Ecosystems of New Zealand (FENZ) v1.0 geodatabase. Ministry for the Environment hosts this copy of this layer for convenience and visibility. For all inquiries please contact Department of Conservation directly.

FENZ requires specialist GIS knowledge for its technical operation and biodiversity knowledge for understanding the content. Because of FENZ’s complexity, DOC is providing advice, briefings and training (where possible) to ensure users understand its strengths, limitations and appropriate applications.

If you would like more information about FENZ or access to any FENZ data sets, email fenz@doc.govt.nz.

www.doc.govt.nz/our-work/freshwater-ecosystems-of-...

Variables:

Catch_id - This is a unique identifier that can be used to link to other datasets in the FENZ database, or datasets from other sources that also use a FENZ id.

Catchment names:

Currently a definitive catchment names dataset does not exist. However for your convenience, an unofficial list has been provided in the attachments ("fenz_catnames.csv") which can be joined to the catchment boundaries to provide names. Feedback on the accuracy or completeness of these names is welcomed.

Layer ID 99776
Data type Vector multipolygon
Feature count 10131
Services Vector Query API, Web Feature Service (WFS), Catalog Service (CS-W)

ANZLIC NZ Airsheds Gazetted

162
15
Added
01 Nov 2018

This item was first added to MfE Data Service on 01 Nov 2018

Document ID21773
File nameanzlic-nz-airsheds-gazetted.xml
TypeXML
Size22.2 KB

ANZLIC NZ Airsheds Gazetted

249
26
Added
01 Nov 2018

This item was first added to MfE Data Service on 01 Nov 2018

2
Document ID21772
File nameanzlic-nz-airsheds-gazetted.pdf
TypePDF
Size25.5 KB

NZ Airsheds Gazetted

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

6353
37
Added
01 Nov 2018

This dataset was first added to MfE Data Service on 01 Nov 2018.

A spatial dataset delineating the extent of New Zealand Gazette airsheds (gazette.govt.nz).

Layer ID 98617
Data type Vector multipolygon
Feature count 72
Services Vector Query API, Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Data quality for nitrogen dioxide concentrations New Zealand Transport Agency data 201016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

176
14
Added
17 Oct 2018

This item was first added to MfE Data Service on 17 Oct 2018

3
Document ID21762
File namedata-quality-for-nitrogen-dioxide-concentrations-new-zealand-transport-agency-data-201016.pdf
TypePDF
Size514 KB

Health impacts of PM10, 2006 & 2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

3189
10
Added
17 Oct 2018

This dataset was first added to MfE Data Service on 17 Oct 2018.

PM10 (particulate matter less than 10 micrometres in diameter) comprises solid and liquid particles in the air. PM10 can be inhaled and the largest particles in this size fraction are deposited in the upper airways, while the smaller ones can deposit deep in the lungs. Children, the elderly, and people with existing heart or lung problems have a higher risk of health effects from PM10 exposure. Health effects include decreased lung function or heart attack, and mortality.
We report on the modelled number of premature deaths for adults (30+ years), hospitalisations, and restricted activity days for people of all ages for years 2006 and 2016 only. The model only includes impacts that result from exposure to PM10 that comes from human activities.
We focus on PM10 from human activities because these sources can be managed, unlike PM from natural sources such as sea salt.
• Premature deaths are those, often preventable, occurring before a person reaches the age they could be expected to live to.
• Hospitalisations relate to those for respiratory and cardiac illnesses (not including cases leading to premature death).
• Restricted activity days occur when symptoms are sufficient to limit usual activities such as work or study. These days aren’t shared evenly across the population – people with asthma or other respiratory conditions would likely have more restricted activity days.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 98462
Data type Table
Row count 12
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Nitrogen dioxide concentrations: New Zealand Transport Agency data, 2010–16

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

2862
25
Added
16 Oct 2018

This dataset was first added to MfE Data Service on 16 Oct 2018.

Nitrogen dioxide (NO2) is a gas that is harmful to human health, ecosystems, and plants (US EPA, 2008). It can be emitted directly into the air but is often formed as a secondary pollutant when nitric oxide (NO) emissions react with other chemicals. It also contributes to the formation of secondary particulate matter (PM) and ozone, which have their own health impacts. In New Zealand, motor vehicles are the main human-made source of nitrogen oxides (NOx), the collective term for NO2 and NO. Because nitrogen dioxide concentrations are closely associated with vehicle emissions, it can be used as a proxy for other motor-vehicle pollutants such as benzene, carbon dioxide, and carbon monoxide.
Human exposure to high nitrogen dioxide concentrations causes inflammation of the airways and respiratory problems, particularly asthma. Nitrogen dioxide causes leaf injury in plants exposed to high levels. It also contributes to forming secondary particulate matter and ozone, which have their own health impacts.
We report on observed nitrogen dioxide concentrations from the New Zealand Transport Agency’s (NZTA) monitoring network. NZTA has comprehensive coverage across New Zealand.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 98426
Data type Table
Row count 828
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Natural sources of particulate matter, 2000–16

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

2767
12
Added
16 Oct 2018

This dataset was first added to MfE Data Service on 16 Oct 2018.

Particulate matter (PM) is made up of solid and liquid particles in the air. It is grouped according to its size – PM10 is less than 10 micrometres (µm) in diameter; PM2.5 is less than 2.5 µm in diameter. Health effects from exposure to PM include lung and cardiac disease, and premature death.
Natural sources of PM include sea salt, dust (airborne soil, also called crustal material), secondary sulphate, pollen, black carbon from wild fires, and volcanic ash. There is little evidence that sea salt particles themselves are harmful (World Health Organization (WHO), 2013) although whether sea salt that has interacted with urban air pollutants is harmful is not known. PM can also be produced by human activities, such as dust from construction or unsealed roads, but this is not considered natural because it comes from human activity.
Natural sources of PM are important because although they cannot be managed they still contribute to ambient concentrations, which are subject to the National Environmental Standards for Air Quality (NESAQ). Exceedances of the NESAQ occur when the 24-hour average PM10 concentration exceeds 50 micrograms per cubic metre (µg/m3). There is no NESAQ for PM2.5 exposure, so we report on exceedances of the WHO 24-hour average PM2.5 concentration guideline (25 µg/m3).
We report on data from nine sites from 2005–16 and report only on sea salt for natural PM because other sources of natural PM, such as dust and sulphate, can be generated by humans as well. We were not able to separate the natural from human-generated contributions. Analysis of particle size, composition, and sources in New Zealand shows that sea salt made the largest contribution to natural PM.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 98425
Data type Table
Row count 13484
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed
Results 101 to 110 of 1077