Rainfall, 1960–2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

3113
136
Added
12 Oct 2017

This dataset was first added to MfE Data Service on 12 Oct 2017.

Daily rainfall values for 30 representative sites from 1960–2016.
Rain is vital for life – it supplies the water we need to drink and to grow our food, keeps our ecosystems healthy, and supplies our electricity. New Zealand’s mountainous terrain and location in the roaring forties mean rainfall varies across the country. Changes in rainfall amount or timing can significantly affect agriculture, energy, recreation, and the environment. For example, an increase or decrease of rainfall in spring can have marked effects on crops or fish populations.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89401
Data type Table
Row count 617808
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Annual rainfall trends, 1960–2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

1132
36
Added
12 Oct 2017

This dataset was first added to MfE Data Service on 12 Oct 2017.

Annual rainfall trends for 30 representative sites from 1960–2016.
Rain is vital for life – it supplies the water we need to drink and to grow our food, keeps our ecosystems healthy, and supplies our electricity. New Zealand’s mountainous terrain and location in the roaring forties mean rainfall varies across the country. Changes in rainfall amount or timing can significantly affect agriculture, energy, recreation, and the environment. For example, an increase or decrease of rainfall in spring can have marked effects on crops or fish populations.
Trend direction was assessed using the Theil-Sen estimator and the Two One-Sided Test (TOST) for equivalence at the 95% confidence level.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89400
Data type Table
Row count 30
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Annual glacier ice volumes trend, 1977–2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

2523
16
Added
12 Oct 2017

This dataset was first added to MfE Data Service on 12 Oct 2017.

A glacier is a body of slow-moving ice, at least 1 hectare in area that has persisted for two decades or longer. New Zealand has 3,144 glaciers. Most are located along the Southern Alps on the South Island, although Mount Ruapehu on the North Island supports 18 glaciers. New Zealand’s large glaciers are noteworthy for their large debris cover. The exceptions, Franz Joseph and Fox glaciers, are rare examples of glaciers that terminate in a rainforest.
Glacier volume is strongly influenced by climate factors, such as temperature and precipitation, which scientists expect to be affected by the warming climate. Glacial ice is an important water resource. Changes to ice storage and melting can affect ecological and hydropower resources downstream, as well as important cultural values and tourism.
Trend direction was assessed using the Theil-Sen estimator and the Two One-Sided Test (TOST) for equivalence at the 95% confidence level.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89397
Data type Table
Row count 1
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Annual sea surface temperature difference from normal, 2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

1991
10
Added
12 Oct 2017

This dataset was first added to MfE Data Service on 12 Oct 2017.

The oceans store most of the excess energy accumulated due to increased greenhouse gases in the atmosphere warming the surface layer. These long-term increases in temperature caused by climate change are in addition to natural variability where ocean temperatures change in response to climate oscillations like the El Niño Southern Oscillation.
Changes in sea-surface temperatures can affect marine processes, environments, and species. Some species may shift range or find it hard to survive in changing environmental conditions. Warmer water also takes up more space, which contributes to sea-level rise.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Layer ID 89396
Data type Grid
Resolution About 4548.000m
Services Raster Query API, Catalog Service (CS-W), data.govt.nz Atom Feed

Annual sea surface temperature difference from normal, 2015

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

2072
5
Added
12 Oct 2017

This dataset was first added to MfE Data Service on 12 Oct 2017.

The oceans store most of the excess energy accumulated due to increased greenhouse gases in the atmosphere warming the surface layer. These long-term increases in temperature caused by climate change are in addition to natural variability where ocean temperatures change in response to climate oscillations like the El Niño Southern Oscillation.
Changes in sea-surface temperatures can affect marine processes, environments, and species. Some species may shift range or find it hard to survive in changing environmental conditions. Warmer water also takes up more space, which contributes to sea-level rise.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Layer ID 89395
Data type Grid
Resolution About 4548.000m
Services Raster Query API, Catalog Service (CS-W), data.govt.nz Atom Feed

Annual sea surface temperature difference from normal, 2014

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

1963
3
Added
12 Oct 2017

This dataset was first added to MfE Data Service on 12 Oct 2017.

The oceans store most of the excess energy accumulated due to increased greenhouse gases in the atmosphere warming the surface layer. These long-term increases in temperature caused by climate change are in addition to natural variability where ocean temperatures change in response to climate oscillations like the El Niño Southern Oscillation.
Changes in sea-surface temperatures can affect marine processes, environments, and species. Some species may shift range or find it hard to survive in changing environmental conditions. Warmer water also takes up more space, which contributes to sea-level rise.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Layer ID 89394
Data type Grid
Resolution About 4548.000m
Services Raster Query API, Catalog Service (CS-W), data.govt.nz Atom Feed

Growing degree days annual growing season averages and totals, 1972/3–2015/6

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

2736
16
Added
12 Oct 2017

This dataset was first added to MfE Data Service on 12 Oct 2017.

Growing degree days (GDD) measures the amount of warmth available for plant and insect growth and can be used to predict when flowers will bloom and crops and insects will mature. GDD counts the total number of degrees Celsius each day is above a threshold temperature. In this report we used 10 degrees Celsius. Increased GDD means that plants and insects reach maturity faster, provided that other conditions necessary for growth are favourable, such as sufficient moisture and nutrients. As a measure of temperature, GDD experiences short-term changes in response to climate variations, such as El Niño, and in the longer-term is affected by our warming climate.
This dataset gives the average number of GDD over growing seasons (July 1 – June 30 of the following year) for New Zealand, the North and South Islands, and for all 30 sites.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89393
Data type Table
Row count 1389
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Growing degree days monthly data by site, 1972–2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

2615
21
Added
12 Oct 2017

This dataset was first added to MfE Data Service on 12 Oct 2017.

Growing degree days (GDD) measures the amount of warmth available for plant and insect growth and can be used to predict when flowers will bloom and crops and insects will mature. GDD counts the total number of degrees Celsius each day is above a threshold temperature. In this report we used 10 degrees Celsius. Increased GDD means that plants and insects reach maturity faster, provided that other conditions necessary for growth are favourable, such as sufficient moisture and nutrients. As a measure of temperature, GDD experiences short-term changes in response to climate variations, such as El Niño, and in the longer-term is affected by our warming climate.
This dataset gives the number of GDD per month and calendar year for all 30 sites.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89392
Data type Table
Row count 1290
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Frost and warm days trend assessment, 1972–2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

2332
13
Added
12 Oct 2017

This dataset was first added to MfE Data Service on 12 Oct 2017.

The number of frost and warm days changes from year to year in response to climate variation, such as the warming pattern induced by El Niño. Climate models project we may experience fewer cold and more warm extremes in the future. Changes in the number of frost and warm days can affect agriculture, recreation, and our behaviour, for example, what we do to keep safe on icy roads or whether to use air conditioning to keep cool.
A frost day is when the minimum temperature recorded is below 0 degrees Celsius. It refers to a temperature measured in an instrument screen 1.2m above the ground rather than a ‘ground frost’. We define a warm day as having a maximum recorded temperature above 25 degrees Celsius. The threshold of 25 degrees Celsius is chosen to represent days where action might be taken to keep cool (eg turn air conditioning on).
This dataset gives the trend in frost and warm days for New Zealand, the North and South Islands, and for all 30 sites.
For frost days we have used calendar years. For warm days we have used growing season (July 1 – June 30 of the following year).
Trend direction was assessed using the Theil-Sen estimator and the Two One-Sided Test (TOST) for equivalence at the 95% confidence level.
More information on this dataset and how it relates to our Environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89388
Data type Table
Row count 60
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Frost and warm days, 1972–2016

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

729
17
Added
12 Oct 2017

This dataset was first added to MfE Data Service on 12 Oct 2017.

The number of frost and warm days changes from year to year in response to climate variation, such as the warming pattern induced by El Niño. Climate models project we may experience fewer cold and more warm extremes in the future. Changes in the number of frost and warm days can affect agriculture, recreation, and our behaviour, for example, what we do to keep safe on icy roads or whether to use air conditioning to keep cool.
A frost day is when the minimum temperature recorded is below 0 degrees Celsius. It refers to a temperature measured in an instrument screen 1.2 m above the ground rather than a ‘ground frost’. We define a warm day as having a maximum recorded temperature above 25 degrees Celsius. The threshold of 25 degrees Celsius is chosen to represent days where action might be taken to keep cool (eg turn air conditioning on).
This dataset gives the number of frost and warm days per month and calendar year for New Zealand, the North and South Islands, and all 30 sites.
For frost days we have used calendar years. For warm days we have used growing season (July 1 – June 30 of the following year).
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

Table ID 89387
Data type Table
Row count 32667
Services Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed
Results 71 to 80 of 427